Skip to main content
Log in

Morphological characterization, variability, and diversity among amaranth genotypes from Ethiopia

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Amaranths are versatile, dicotyledonous plants with the potential for high yields. It has been extensively investigated as a model C4 plant. They have great photosynthetic performance as a result of eliminating the rival photorespiration mechanism. This increases the advantages of expanding the adaptation and cultivation of amaranth in Ethiopia. The objectives of the current study were to estimate genetic diversity, heritability, and genetic advance for yield and yield-contributing traits of amaranth genotypes based on agro-morphological traits. One hundred twenty amaranth genotypes were evaluated over two years using an alpha lattice design with two replications. The analysis of variance indicated that the mean square due to year and genotype-by-year interaction varied significantly for most measured traits. The estimates of variability, heritability, and genetic advance found in this study indicate the incredible genetic diversity in amaranth genotypes and the strength of selection response for these traits in the population. The findings showed that very high to moderately high heritability, high to moderate genetic advance, and genetic variability was observed for the traits basal lateral branch length, axillary inflorescence length, leaf area, branch number, plant height at flowering, plant height at maturity, stem diameter, days to flowering, grain filling periods, leaf width, and leaf length. Furthermore, the potential for amaranth improvement through appropriate selection is revealed by the existence of significant differences between the number of superior and inferior genotypes for the majority of examined traits. This suggests that these traits are governed more by additive gene action and that selection based on these traits might be successful in achieving the desired genetic gains for improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aderibigbe O, Ezekiel O, Owolade S, Korese J, Sturm B, Hensel O (2022) Exploring the potentials of underutilized grain amaranth (Amaranthus spp.) along the value chain for food and nutrition security: a review. Crit Rev Food Sci Nutr 62(3):656–669

    Article  CAS  PubMed  Google Scholar 

  • Alemayehu FR, Bendevis M, Jacobsen SE (2015) The potential for utilizing the seed crop amaranth (Amaranthus spp.) in East Africa as an alternative crop to support food security and climate change mitigation. J Agron Crop Sci 201(5):321–329

    Article  CAS  Google Scholar 

  • Ali Z, Khan AS, Asad MA (2002) Salt tolerance in bread wheat: genetic variation and heritability. Asian J Plant Sci 1(4):420–422

    Article  Google Scholar 

  • Allard R (1960) Principle of plant breeding. Jhon Wiley and Sons: Inc, New York

    Google Scholar 

  • Amegan E, Efisue A, Akoroda M, Shittu A, Tonegnikes F (2020) Genetic diversity of Korean rice (Oryza sativa L.) germplasm for yield and yield related traits for adoption in rice farming system in Nigeria. Int J Genet Genomics 8(1):19–28

    Article  Google Scholar 

  • Andini R, Yoshida S, Yoshida Y, Ohsawa R (2013) Amaranthus genetic resources in Indonesia: morphological and protein content assessment in comparison with worldwide amaranths. Genet Resour Crop Evol 60(7):2115–2128

    Article  CAS  Google Scholar 

  • Assad R, Reshi ZA, Jan S, Rashid I (2017) Biology of amaranths. Bot Rev 83(4):382–436

    Article  Google Scholar 

  • Bhargava A, Shukla S, Chatterjee A, Singh S (2004) Selection response in vegetable amaranth (A. tricolor) for different foliage cuttings. J Appl Hortic 6:43–44

    Article  Google Scholar 

  • Bhatia R, Dey S, Kumar R (2017) Genetic divergence studies in tulip (Tulipa gesneriana L.). Indian J Hortic 74(4):562–567

    Article  Google Scholar 

  • Biru A (1978) Agronomy research manual.

  • Brenner D, Baltensperger D, Kulakow P, Lehmann JW, Myers R, Slabbert M, Sleugh B (2000) Genetic resources and breeding of amaranthus. Plant Breed Rev 19:227–285

    CAS  Google Scholar 

  • Brink M, Belay G, De Wet J (2006) Plant resources of tropical Africa 1: cereals and pulses. PROTA Foundation, Wageningen

    Google Scholar 

  • Chan K, Sun M (1997) Genetic diversity and relationships detected by isozyme and RAPD analysis of crop and wild species of Amaranthus. Theor Appl Genet 95(5–6):865–873

    Article  CAS  Google Scholar 

  • Chauhan C, Singh S (2019) Genetic variability, heritability and genetic advance studies in oat (Avena sativa L.). IJCS 7(1):992–994

    CAS  Google Scholar 

  • Comstock R, Robinson H (1952) Estimation of average dominance of genes. Heterosis 2:494–516

    Google Scholar 

  • Council NR (2006) Lost crops of Africa: volume II: vegetables, vol 2. National Academies Press, Washington

    Google Scholar 

  • D’Amico S, Schoenlechner R (2017) Amaranth: its unique nutritional and health-promoting attributes. Gluten-Free Anc Grains. https://doi.org/10.1016/B978-0-08-100866-9.00006-6

    Article  Google Scholar 

  • Das S (2016) Amaranthus: a promising crop of future. Springer, Berlin

    Book  Google Scholar 

  • de Jesus Souza FF, Devilla IA, Guimarà RT, Teixeira IR, Spehar CR (2016) Physiological quality of quinoa seeds submitted to different storage conditions. Afr J Agric Res 11(15):1299–1308

    Article  Google Scholar 

  • Debelo D, Girma B, Alemayehu Z, Gelalcha S (2001) Drought tolerance of some bread wheat genotypes in Ethiopia. Afr Crop Sci J 9(2):385–392

    Google Scholar 

  • Demissew S (2010) The Ethiopian flora project: lessons learnt. In: Paper presented at the proceedings of the fourth global botanic gardens congress, Dublin

  • Deshmukh S, Basu M, Reddy P (1986) Genetic variability, character association and path coefficients of quantitative traits in Virginia bunch varieties of groundnut. Indian J Agric Sci

  • Ene CO, Ogbonna PE, Agbo CU, Chukwudi UP (2016) Studies of phenotypic and genotypic variation in sixteen cucumber genotypes. Chil J Agric Res 76(3):307–313

    Article  Google Scholar 

  • Fageria N, Castro E, Baligar V (2004) Response of upland rice genotypes to soil acidity. In: Wilson MJ, He Z, Yang X (eds) The Red Soils of China. Springer, Berlin, pp 219–237

    Chapter  Google Scholar 

  • Falconer D (1989) Introduction to quantitative genetics. Wiley, New York

    Google Scholar 

  • Fekadu W, Mekbib F, Lakew B, Haussmann BI (2022) Genotype×environment interaction and yield stability in barley (Hordeum vulgare L.) genotypes in the central highland of Ethiopia. J Crop Sci Biotechnol 26:1–15

    Google Scholar 

  • Feng T, Xi Y, Zhu Y-H, Chai N, Zhang X-T, Jin Y, Li F-M (2021) Reduced vegetative growth increases grain yield in spring wheat genotypes in the dryland farming region of North–West China. Agronomy 11(4):663

    Article  CAS  Google Scholar 

  • Gatti I, Anido FL, Vanina C, Asprelli P, Country E (2005) Heritability and expected selection response for yield traits in blanched asparagus. Genet Mol Res 4(1):67–73

    PubMed  Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research. Wiley, New York

    Google Scholar 

  • Grubben G, Van Sloten D (1981a) Genetic resources of amaranth-a global plan of action. IBPGR, Wageningen

    Google Scholar 

  • Grubben G, Van Sloten D (1981b) Genetic resources of amaranths, international board for plant genetic resources. Food and Agriculture Organisation, Rome

    Google Scholar 

  • Haritha G, Vishnukiran T, Yugandhar P, Sarla N, Subrahmanyam D (2017) Introgressions from Oryza rufipogon increase photosynthetic efficiency of KMR3 rice lines. Rice Sci 24(2):85–96

    Article  Google Scholar 

  • Hartley HO (1950) The maximum F-ratio as a short-cut test for heterogeneity of variance. Biometrika 37(3/4):308–312

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen S, Mujica A, Guarino L (2000) The genetic resources of the Andean grain crop amaranth (Amaranthus caudatus L., A. cruentus L. and A. hipochondriacus L.). In: Paper presented at the proceedings of the international conference on science and technology for managing plant genetic diversity in the twenty-first century, Kuala Lumpur, Malaysia

  • Jain S, Hauptli H, Vaidya K (1982) Outcrossing rate in grain amaranths [Amaranthus cruentus, Amaranthus hypochondriacus]. J Hered

  • Jifar Daba H (2018) Analyses of phenotypic and molecular diversity, genotype by environment interaction and food-feed traits in tef [Eragrostistef (Zucc.) Trotter]. Addis Ababa University, Addis Ababa

    Google Scholar 

  • Johnson HW, Robinson H, Comstock R (1955) Estimates of genetic and environmental variability in soybeans 1. Agron J 47(7):314–318

    Article  Google Scholar 

  • Juan R, Pastor J, Alaiz M, Vioque J (2007) Electrophoretic characterization of Amaranthus L. seed proteins and its systematic implications. Bot J Linn Soc 155(1):57–63

    Article  Google Scholar 

  • Kanfany G, Ayenan MAT, Zoclanclounon YAB, Kane T, Ndiaye M, Diatta C, Fofana A (2021) Analysis of genotype-environment interaction and yield stability of introduced upland rice in the groundnut basin agroclimatic zone of Senegal. Adv Agric 2021:1–7

    Google Scholar 

  • Keneni G (2012) Genetic potential and limitations of Ethiopian chickpea (Cicer arietinum L.) germplasm for improving attributes of symbiotic nitrogen fixation, phosphorus upatke and use efficiency, and adzuki bean beetle (Callosobruchus chinensis L.) resistance. Adiss Ababa University, Adiss Ababa

    Google Scholar 

  • Khan M, Khan A, Khattak G, Subhan F (2014) Genetic effects in controlling grain filling duration in wheat crosses. JAPS J Animal Plant Sci 24(3):803

    Google Scholar 

  • Kumar, Arumugam T, Anandakumar C, Premalakshmi V (2013) Genetic variability for quantitative and qualitative characters in Brinjal (Solanum melongena L.). Afr J Agric Res 8(39):4956–4959

    Google Scholar 

  • Kumar T, Dixit S, Ram T, Yadaw R, Mishra K, Mandal N (2014) Breeding high-yielding drought-tolerant rice: genetic variations and conventional and molecular approaches. J Exp Bot 65(21):6265–6278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar (2015) Collection, evaluation and identification of suitable genotypes of Amaranthus (Amaranthus Spp.) for chhattisgarh plain condition. Indira Gandhi Krishi Vishwavidyalaya Raipur.

  • Kuralarasan V, Vanniarajan C, Kanchana S, Veni K, Lavanya SA (2018) Genetic divergence, heritability and genetic advance in mutant lines of urdbean [Vigna mungo (L.) Hepper]. Legum Res 41(6):833–836

    Google Scholar 

  • Lakshmi B, Vimala V (2000) Nutritive value of dehydrated green leafy vegetable powders. J Food Sci Technol 37(5):465–471

    Google Scholar 

  • Lee J-R, Hong G-Y, Dixit A, Chung J-W, Ma K-H, Lee J-H, Park Y-J (2008) Characterization of microsatellite loci developed for Amaranthus hypochondriacus and their cross-amplifications in wild species. Conserv Genet 9(1):243–246

    Article  CAS  Google Scholar 

  • Lehman A, O’Rourke N, Hatcher L, Stepanski E (2013) JMP for basic univariate and multivariate statistics: methods for researchers and social scientists. Sas Institute, Cary

    Google Scholar 

  • Lipi L, Hasan M, Akter A, Quddus M, Biswas P, Ansari A, Akter S (2020) Genetic variation, heritability and genetic advance in some promising rice hybrids. SAARC J Agric 18(2):39–49

    Article  Google Scholar 

  • Malaghan SN, Revanappa S, Ajjappalavar P, Nagaraja M, Raghavendra S (2018) Genetic variability, heritability and genetic advance in grain amaranth (Amaranthus spp.). Int J Curr Microbiol App Sci 7(7):1485–1494

    Article  Google Scholar 

  • Manal HE (2009) Estimation of heritability and genetic advance of yield traits in wheat (Triticum aestivum L.) under drought condition. Int J Genet Mol Biol 1(7):115–120

    Google Scholar 

  • Mbwambo Bwogi GV, Ekhuya NA, Epel AR, Saidi M (2013) Morphological characteristics, growth and yield of elite grain and leaf amaranth in Northern Tanzania. Dissertation, Jomo Kenyatta University of Agriculture and Technology

  • Mlakar SG, Turinek M, Jakop M, Bavec M, Bavec F (2009) Nutrition value and use of grain amaranth: potential future application in bread making. Agricultura 6(4):43–53

    Google Scholar 

  • Mobina P, Jagatpati T (2015) Genetic variability of Amaranthus hybridus in tropical plains of west Bengal. Int J Pure App Biosci 3(2):389–395

    Google Scholar 

  • Moghaddam M, Pourdad S (2009) Comparison of parametric and non-parametric methods for analysing genotype× environment interactions in safflower (Carthamus tinctorius L.). J Agric Sci 147(5):601–612

    Article  Google Scholar 

  • Mohammadi R (2017) Interpretation of genotype×year interaction in rainfed durum wheat under moderate cold conditions of Iran. N Z J Crop Hortic Sci 45(1):55–74

    Article  Google Scholar 

  • Mohsin T, Khan N, Naqvi FN (2009) Heritability, phenotypic correlation and path coefficient studies for some agronomic characters in synthetic elite lines of wheat. J Food Agric Environ 7(3–4):278–282

    Google Scholar 

  • Ndukauba J, Nwofia G, Okocha P, Ene-Obong E (2015) Variability in egusi-melon genotypes (Citrullus lanatus [Thumb] Matsum and Nakai) in derived savannah environment in South–Eastern Nigeria. Int J Plant Res 5(1):19–26

    Google Scholar 

  • Nyasulu M, Sefasi A, Chimzinga S, Maliro M (2021) Agromophological characterisation of amaranth accessions from Malawi. Am J Plant Sci 12(10):1528–1542

    Article  Google Scholar 

  • Olaniyi J (2007) Evaluation of yield and quality performance of grain amaranth varieties in the Southwestern Nigeria. Res J Agron 1(2):42–45

    Google Scholar 

  • Pandey R, Singh R (2011) Genetic divergence in grain amaranth (Amaranthus hypochondriacus L.). Genetika 43(1):41–49

    Article  Google Scholar 

  • Paredes-Lopez O (2018) Amaranth biology, chemistry, and technology. CRC Press, Boca Raton

    Book  Google Scholar 

  • Parveen M, Chattopadhyay N, Tah J (2013) Biometric evaluation of genotypic variability and genetic advance in amaranth cultivars. SciTech J Sci Technol 2:26–30

    Google Scholar 

  • Peng S, Khush G, Cassman K (1994) Evolution of the new plant ideotype for increased yield potential. In: Paper presented at the breaking the yield barrier: proceedings of a workshop on rice yield potential in favorable environments. International Rice Research Institute, Los Banos, Philippines

  • Persaud M, Persaud R, Gobind N, Khan A, Corredor E (2022) Genotype by environment interactions of grain yield performance and lodging incidence in advance breeding lines of rice across environments in Guyana. Int J Agric Policy Res. https://doi.org/10.15739/IJAPR.22.009

    Article  Google Scholar 

  • Popa G, Cornea CP, Ciuca M, Babeanu N, Popa O, Marin D (2010) Studies on genetic diversity in Amaranthus species using the RAPD markers. Analele Universităţii Din Oradea-Fascicula Biologie 2:280–285

    Google Scholar 

  • Puntel LA (2012) Field characterization of maize photosynthesis response to light and leaf area index under different nitrogen levels: a modeling approach. Iowa State University, Ames

    Book  Google Scholar 

  • Rajan R (2012) Studies on variability, heritability and genetic advance for some yield and quality traits in tomato (Lycopersicon esculentum MILL.). Plant Arch 12(1):109–111

    Google Scholar 

  • Rana J, Yadav S, Mandal S, Yadav S (2005) Genetic divergence and interrelationship analysis in grain amaranth (Amaranthus hypochondriacus) germplasm. Indian J Genet Plant Breed 65(02):99–102

    CAS  Google Scholar 

  • Rastogi A, Shukla S (2013) Amaranth: a new millennium crop of nutraceutical values. Crit Rev Food Sci Nutr 53(2):109–125

    Article  CAS  PubMed  Google Scholar 

  • Raza MA, Feng LY, van Der Werf W, Iqbal N, Khalid MHB, Chen YK, Khan A (2019) Maize leaf-removal: a new agronomic approach to increase dry matter, flower number and seed-yield of soybean in maize soybean relay intercropping system. Sci Rep 9(1):1–13

    Article  Google Scholar 

  • Remison S, Akinleye D (1979) A note on the relationship between leaf area and yield of maize varieties. East Afr Agric for J 45(2):124–129

    Article  Google Scholar 

  • Robinson H, Comstock RE, Harvey P (1949) Estimates of heritability and the degree of dominance in corn.

  • Ruth ON, Unathi K, Nomali N, Chinsamy M (2021) Underutilization versus nutritional-nutraceutical potential of the Amaranthus food plant: a mini-review. Appl Sci 11(15):6879

    Article  CAS  Google Scholar 

  • Samadia D (2005) Genetic variability studies in Lasora (Cordia myxa Roxb.). Indian J Plant Genet Resour 18(3):236–240

    Google Scholar 

  • Samarina LS, Malyarovskaya VI, Rakhmangulov RS, Koninskaya NG, Matskiv AO, Shkhalakhova RM, Gvasaliya MV (2022) Population analysis of Diospyros lotus in the Northwestern Caucasus based on leaf morphology and multilocus DNA markers. Int J Mol Sci 23(4):2192

    Article  PubMed  PubMed Central  Google Scholar 

  • Samonte, Wilson L, McClung A (1998) Path analyses of yield and yield-related traits of fifteen diverse rice genotypes. Crop Sci 38(5):1130–1136

    Article  Google Scholar 

  • Sandhu S, Brar P, Dhall R (2015) Variability of agronomic and quality characteristics of garlic (Allium sativum L.) ecotypes. SABRAO J Breed Genet 47(2):133–142

    Google Scholar 

  • Santra D, Schoenlechner R (2017) Amaranth part 2—sustainability, processing, and applications of amaranth. In: Sustainable protein sources. Elsevier, pp 257–264

  • Sarker U, Oba S (2021) Color attributes, betacyanin, and carotenoid profiles, bioactive components, and radical quenching capacity in selected Amaranthus gangeticus leafy vegetables. Sci Rep 11(1):1–14

    Article  Google Scholar 

  • Satterthwaite FE (1946) An approximate distribution of estimates of variance components. Biom Bull 2(6):110–114

    Article  CAS  Google Scholar 

  • Sawadogo N, Nanema R, Bationo P, Traore R, Nebie B, Tiama D, Zongo J (2014) Évaluation de la diversité génétique des sorghos à grains sucrés (Sorghum bicolor (L.) Moench) du Nord du Burkina Faso. J Appl Biosci 84:7654–7664

    Article  Google Scholar 

  • Selvan RK, Yassin MG, Govindarasu R (2013) Studies on genetic parameters in grain Amaranthus (Amaranthus hypochondriacus L.) as influenced by plant densities. J Plant Breed Genet 1(1):34–41

    Google Scholar 

  • Shah LR, Afroza B, Khan S, Habib M (2018) Morphological characterization of Amaranthus spp. under temperate environment using NBPGR descriptor. J Pharmacogn Phytochem 7(1):2716–2718

    CAS  Google Scholar 

  • Sharma-Natu P, Ghildiyal M (2005) Potential targets for improving photosynthesis and crop yield. Curr Sci 88:1918–1928

    CAS  Google Scholar 

  • Sheikh SM, Singh O (2013) Pseudocereals and millets: the lost crops of Kashmir. Genet Resour Crop Evol 60(3):1191–1199

    Article  Google Scholar 

  • Shongwe VD, Magongo BN, Masarirambi MT, Manyatsi AM (2010) Effects of irrigation moisture regimes on yield and quality of paprika (Capsicum annuum L.). Phys Chem Earth Parts a/b/c 35(13–14):717–722

    Article  Google Scholar 

  • Showemimo F, Soyombo MA, Amira JO, Porbeni JB (2021) Traits selection criteria for genetic improvement of grain and leafy amaranth (Amaranthus spp.) using principal component analysis. Egypt J Agric Res 99(2):170–179

    Google Scholar 

  • Shukla S, Bhargava A, Chatterjee A, Srivastava A, Singh S (2006a) Genotypic variability in vegetable amaranth (Amaranthus tricolor L.) for foliage yield and its contributing traits over successive cuttings and years. Euphytica 151(1):103–110

    Article  CAS  Google Scholar 

  • Shukla S, Bhargava A, Chatterjee A, Srivastava J, Singh N, Singh S (2006b) Mineral profile and variability in vegetable amaranth (Amaranthus tricolor). Plant Foods Hum Nutr 61(1):21–26

    Article  Google Scholar 

  • Singh M, Ceccarelli S, Hamblin J (1993) Estimation of heritability from varietal trials data. Theor Appl Genet 86(4):437–441

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Singh S, Kumar D, Verma H (2001) Studies on variability, heritability and genetic. Progress Agric 1:76

    Google Scholar 

  • Singh VK, Sharma V, Paswan SK, Chaudhary M, Sharma B, Chauhan M (2016) Study on genetic variability, heritability and genetic advance for yield and its contributing traits in linseed (Linum usitatissimum L.). Curr Adv Agric Sci Int J 8:192

    Article  CAS  Google Scholar 

  • Singh, Chaudhary BD (1977) Biometrical methods in quantitative genetic analysis. In: Biometrical methods in quantitative genetic analysis.

  • Sivasubramanian S, Menon M (1973) Heterosis and inbreeding depression in rice. Madras Agric J 60(7):1139–1140

    Google Scholar 

  • Smith DL, Hamel C (2012) Crop yield: physiology and processes. Springer Science and Business Media, Berlin

    Google Scholar 

  • Sogbohossou OE, Achigan-Dako EG (2014) Phenetic differentiation and use-type delimitation in Amaranthus spp. from worldwide origins. Sci Hortic 178:31–42

    Article  Google Scholar 

  • Sokolova D, Shelenga T, Zvereva O, Solovieva A (2021) Comparative characteristics of the amino acid composition in amaranth accessions from the VIR Collection. Turk J Agric for 45(1):68–78

    CAS  Google Scholar 

  • Sossou EB, Achigan-Dako EG, Sogbohossou ED, PF H (2021) Evaluation of 25 genotypes of Amaranthus cruentus for leaf yield, iron, zinc and carotenoids content.

  • Sravanthi V, Begum H, Sunil N, Reddy M (2012) Variance component analysis for grain yield and agro-economic traits in grain amaranths (Amaranthus spp).

  • Stetter MG, Schmid KJ (2017) Analysis of phylogenetic relationships and genome size evolution of the Amaranthus genus using GBS indicates the ancestors of an ancient crop. Mol Phylogenet Evol 109:80–92

    Article  PubMed  Google Scholar 

  • Stevens JP (2012) Applied multivariate statistics for the social sciences. Routledge, Milton Park

    Book  Google Scholar 

  • Temesgen T, Keneni G, Sefera T, Jarso M (2015) Yield stability and relationships among stability parameters in faba bean (Vicia faba L.) genotypes. Crop J 3(3):258–268

    Article  Google Scholar 

  • Thapa R, Blair MW (2018) Morphological assessment of cultivated and wild amaranth species diversity. Agronomy 8(11):272

    Article  CAS  Google Scholar 

  • Trivedi A, Kumar P, Chandra G, Guleria H, Chauhan S (2022) Estimation of genetic variability, heritability and genetic advance in grain amaranth (Amaranthus hypochondriacus L.).

  • Upadhyay S, Mehta N, Tiwari AK (2019) Assessment of variability among flax type linseed genotypes (Linum usitatissimum L.) of Chhattisgarh plains. Int J Curr Microbiol Appl Sci 8(06):2633–2637

    Article  Google Scholar 

  • Venkatesh L, Niranjana M, Nehru S (2014) Genetic variability, heritability and genetic advance in grain amaranth (Amaranthus spp.). Asian Journal of Bio Science 9(1):67–70

    Google Scholar 

  • Vikram P, Swamy BM, Dixit S, Trinidad J, Sta Cruz MT, Maturan PC, Kumar A (2016) Linkages and interactions analysis of major effect drought grain yield QTLs in rice. PLoS ONE 11(3):e0151532

    Article  PubMed  PubMed Central  Google Scholar 

  • Voss-Fels KP, Stahl A, Hickey LT (2019) Q&A: modern crop breeding for future food security. BMC Biol 17(1):1–7

    Article  Google Scholar 

  • Wolosik K, Markowska A (2019) Amaranthus cruentus taxonomy, botanical description, and review of its seed chemical composition. Nat Prod Commun 14(5):1934578X19844141

    CAS  Google Scholar 

  • Yadav R, Rana J, Ranjan J (2014) Analysis of variability parameters for morphological and agronomic traits in grain amaranth (Amaranthus sp.) genotypes. Bioscan 9(4):1661–1665

    Google Scholar 

  • Yanti F (2016) Estimation of variability, heritability and genetic advance among local chili pepper genotypes cultivated in peat lands. Bulg J Agr Sci 22(3):431–436

    Google Scholar 

  • Yao Y, Liu Q, Liu Q, Li X (2008) LAI retrieval and uncertainty evaluations for typical row-planted crops at different growth stages. Remote Sens Environ 112(1):94–106

    Article  Google Scholar 

  • Yarnia M, Benam MK, Tabrizi EFM (2010) Sowing dates and density evaluation of amaranth (cv. Koniz) as a new crop. J Food Agric Environ 8(2):445–448

    Google Scholar 

  • Yosef Alemu ST, Setu H, Ketema S, Hinsermu M, Geleto J, Binalfew T, Wendimu G (2018) Performance of amaranth (Amaranthus Cruentus L.) genotypes for leaf yield in Ethiopia. J Biol Agric Healthc 8(16):2018

    Google Scholar 

Download references

Acknowledgements

I owe a great deal of gratitude and thanks to my friend Gezahagn Kebede from the Holetta Agricultural Research Center in Ethiopia for his academic assistance during my studies. We gratefully acknowledge the financial support of the: Norwegian Embassy in Addis Abeba, and Dilla College of Education, Dilla, Ethiopia.

Funding

The Norwegian Embassy in Addis Abeba funded this field study through the Institutional Collaboration Program between the Norwegian University of Life Sciences, Mekele Universities, and Hawassa Universities (Ethiopia), until the project was phased out and a training grant was awarded to the Dilla College of Education, Ethiopia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mekonnen Yeshitila.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeshitila, M., Gedebo, A., Olango, T.M. et al. Morphological characterization, variability, and diversity among amaranth genotypes from Ethiopia. Genet Resour Crop Evol 70, 2607–2636 (2023). https://doi.org/10.1007/s10722-023-01591-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-023-01591-y

Keywords

Navigation