Skip to main content
Log in

Population and landscape genetic studies of indigenous table grapes (Vitis vinifera subsp. vinifera Hegi)

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Table grapes are important plants due to their food consumption and economic value. They have been cultivated in many countries and comprise an important business industry. Grapes have been cultivated since ancient time in Iran and are cultivated in different province and face diverse environmental and climatic conditions. In general, there are a few genetic studies concerned with table grapes in Iran which are mainly confined to a few cultivars and only consider genetic diversity of the studied samples. There has been no report on landscape genetics and population genetic analysis of these cultivars. In present study 178 cultivated (Vitis vinifera) grape accessions were analyzed for genetic diversity and population structure using start codon targeted (SCoTs) molecular markers. A total of 35 alleles were detected, based on which, the populations showed a low to high genetic variability. Population genetic analyses revealed that the studied populations differ significantly in their genetic content, they show a high magnitude of genetic admixture. Landscape genetic analyses identified SCoT loci which are potentially adaptive to geographical variables and that both global and local spatial variables affect genetic structuring of table grapes in the country. In conclusion, novel findings were provided on genetic structure, gene flow, and spatial structuring of genetic content in table grape populations. Also, the genetic regions associated with the geographical, and landscape variables in table grape were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Plant materials were stored in Shahid beheshti university Herbarium.

References

  • Al-Qurainy F, Khan S, Nadeem M, Tarroum M (2015) SCoT marker for the assessment of genetic diversity in Saudi Arabian date palm cultivars. Pak J Bot 47:637–643

    CAS  Google Scholar 

  • Alleweldt G, Possingham J (1988) Progress in grapevine breeding. Theor Appl Genet 75:669–673

    Article  Google Scholar 

  • Aradhya MK, Dangl GS, Prins BH, Boursiquot J-M, Walker MA, Meredith CP, Simon CJ (2003) Genetic structure and differentiation in cultivated grape, Vitis vinifera L. Genet Res 81:179–192

    Article  CAS  PubMed  Google Scholar 

  • Aras S, Polat JB, Cansaran D, Soylemezoglu G (2005) RAPD analysis of genetic relations between Büzgülü grape cultivars (Vitis vinifera) grown in different parts of Turkey. Acta Biol Cracov Bot 47:77–82

    Google Scholar 

  • Bacilieri R, Lacombe T, Le Cunff L, Vecchi-Staraz D, Laucou V, Genna B, Péros J-P, This P, Boursiquot J-M (2013) Genetic structure in cultivated grapevines is linked to geography and human selection. BMC Plant Biol 13:1–14

    Article  Google Scholar 

  • Barnaud A, Laucou V, This P, Lacombe T, Doligez A (2010) Linkage disequilibrium in wild French grapevine, Vitis vinifera L. subsp silvestris. Heredity 104:431–437

    Article  CAS  PubMed  Google Scholar 

  • Basheer-Salimia R, Mujahed A (2019) Genetic diversity of grapevine (Vitis vinifera L.) as revealed by ISSR markers. J Plant Biotechnol 46:1–8

    Article  Google Scholar 

  • Bhattacharyya P, Kumaria S, Kumar S, Tandon P (2013) Start codon targeted (SCoT) marker reveals genetic diversity of Dendrobium nobile Lindl., an endangered medicinal orchid species. Gene 529:21–26

    Article  CAS  PubMed  Google Scholar 

  • Bowers JE, Meredith CP (1996) Genetic similarities among wine grape cultivars revealed by restriction fragment-length polymorphism (RFLP) analysis. J Am Soc Hortic Sci 121:620–624

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Cipriani G, Spadotto A, Jurman I, Di Gaspero G, Crespan M, Meneghetti S, Frare E, Vignani R, Cresti M, Morgante M (2010) The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin. Theor Appl Genet 121:1569–1585

    Article  PubMed  Google Scholar 

  • Collard BC, Mackill DJ (2009) Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Report 27:86–93

    Article  CAS  Google Scholar 

  • Crespan M (2004) Evidence on the evolution of polymorphism of microsatellite markers in varieties of Vitis vinifera L. Theor Appl Genet 108:231–237

    Article  CAS  PubMed  Google Scholar 

  • Ekhvaia J, Akhalkatsi M (2010) Morphological variation and relationships of Georgian populations of Vitis vinifera L. subsp. sylvestris (CC Gmel.) Hegi. Flora-Morphol Distrib Funct Ecol Plants 205:608–617

    Article  Google Scholar 

  • Emanuelli F, Lorenzi S, Grzeskowiak L, Catalano V, Stefanini M, Troggio M, Myles S, Martinez-Zapater JM, Zyprian E, Moreira FM (2013) Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol 13:1–17

    Article  Google Scholar 

  • Eriksson O, Jakobsson A (1999) Recruitment trade-offs and the evolution of dispersal mechanisms in plants. Evol Ecol 13:411–423

    Article  Google Scholar 

  • Eyduran SP, Akin M, Ercisli S, Eyduran E, Maghradze D (2015) Sugars, organic acids, and phenolic compounds of ancient grape cultivars (Vitis vinifera L.) from Igdir province of Eastern Turkey. Biol Res 48:1–8

    Article  Google Scholar 

  • Fernández-González M, Rodríguez-Rajo F, Escuredo O, Aira M (2013) Influence of thermal requirement in the aerobiological and phenological behavior of two grapevine varieties. Aerobiologia 29:523–535

    Article  Google Scholar 

  • Frichot E, Schoville SD, Bouchard G, François O (2013) Testing for associations between loci and environmental gradients using latent factor mixed models. Mol Biol Evol 30:1687–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorji AM, Poczai P, Polgar Z, Taller J (2011) Efficiency of arbitrarily amplified dominant markers (SCoT, ISSR and RAPD) for diagnostic fingerprinting in tetraploid potato. Am J Potato Res 88:226–237

    Article  Google Scholar 

  • Goufo P, Singh RK, Cortez I (2020) A reference list of phenolic compounds (including stilbenes) in grapevine (Vitis vinifera L.) roots, woods, canes, stems, and leaves. Antioxidants 9:398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grassi F, Labra M, Imazio S, Spada A, Sgorbati S, Scienza A, Sala F (2003) Evidence of a secondary grapevine domestication centre detected by SSR analysis. Theor Appl Genet 107:1315–1320

    Article  CAS  PubMed  Google Scholar 

  • Guo D-L, Zhang J-Y, Liu C-H (2012) Genetic diversity in some grape varieties revealed by SCoT analyses. Mol Biol Rep 39:5307–5313

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Varshney R (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185

    Article  CAS  Google Scholar 

  • Jahnke G, Májer J, Lakatos A, Molnár JG, Deák E, Stefanovits-Bányai É, Varga P (2009) Isoenzyme and microsatellite analysis of Vitis vinifera L. varieties from the Hungarian grape germplasm. Sci Hortic 120:213–221

    Article  CAS  Google Scholar 

  • Jombart T, Devillard S, Dufour A-B, Pontier D (2008) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101:92–103

    Article  CAS  PubMed  Google Scholar 

  • Juibary PL, Seyedmehdi FS, Sheidai M, Noormohammadi Z, Koohdar F (2021) Genetic structure analysis and genetic finger printing of sweet orange cultivars (Citrus sinensis (L.) Osbeck) by using SCoT molecular markers. Genet Resour Crop Evol 68:1645–1654

    Article  CAS  Google Scholar 

  • Jung A, This P, Boccacci P, Borrego J, Botta R, Costantini L, Crespan M, Dangl G, Eisenheld C, Ferreira-Monteiro F (2003) A comparative study of the general utility of SSR markers for grapevine variety characterization and identification: developing a common standard for uniform labelling using reference cultivar-based allele codes. compilers. 2008. Report of a Working Group on Vitis, 116

  • Križman M, Jakše J, Baričevič D, Javornik B, Prošek M (2006) Robust CTAB-activated charcoal protocol for plant DNA extraction. Acta Agric Slov 87:427–433

    Google Scholar 

  • Legendre P, Legendre L (2012) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Linhart YB, Grant MC (1996) Evolutionary significance of local genetic differentiation in plants. Annu Rev Ecol Syst 27:237–277

    Article  Google Scholar 

  • Lodhi M, Reisch B (1995) Nuclear DNA content of Vitis species, cultivars, and other genera of the Vitaceae. Theor Appl Genet 90:11–16

    Article  CAS  PubMed  Google Scholar 

  • Martínez LE, Cavagnaro PF, Masuelli RW, Zuniga M (2006) SSR-based assessment of genetic diversity in South American Vitis vinifera varieties. Plant Sci 170:1036–1044

    Article  Google Scholar 

  • McGovern PE, Fleming SJ, Katz SH (2003) The origins and ancient history of wine: food and nutrition in history and antropology. Routledge, Abingdon

    Book  Google Scholar 

  • Moran PA (1950) A test for the serial independence of residuals. Biometrika 37:178–181

    Article  CAS  PubMed  Google Scholar 

  • Myles S, Chia J-M, Hurwitz B, Simon C, Zhong GY, Buckler E, Ware D (2010) Rapid genomic characterization of the genus Vitis. PLoS ONE 5:e8219

    Article  PubMed  PubMed Central  Google Scholar 

  • Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F, Aradhya MK, Prins B, Reynolds A, Chia J-M, Ware D (2011) Genetic structure and domestication history of the grape. Proc Natl Acad Sci 108:3530–3535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naqinezhad A, Ramezani E, Djamali M, Schnitzler A, Arnold C (2018) Wild grapevine (Vitis vinifera subsp. sylvestris) in the Hyrcanian relict forests of northern Iran: an overview of current taxonomy, ecology and palaeorecords. J for Res 29:1757–1768

    Article  CAS  Google Scholar 

  • Parihar S, Sharma D (2021) A brief overview on Vitis vinifera. Sch Acad J Pharm 12:231–239

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pless E, Saarman NP, Powell JR, Caccone A, Amatulli G (2021) A machine-learning approach to map landscape connectivity in Aedes aegypti with genetic and environmental data. Proc Natl Acad Sci 118:e2003201118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Razi M, Amiri M, Darvishzadeh R, Baneh H, Gomez P (2019) Evaluation of genetic diversity in local cultivars and genotypes of grape (Vitis vinifera) using ISSR markers. Iran J Hortic Sci 50:fa197–fa207

    Google Scholar 

  • Riaz S, De Lorenzis G, Velasco D, Koehmstedt A, Maghradze D, Bobokashvili Z, Musayev M, Zdunic G, Laucou V, Andrew Walker M (2018) Genetic diversity analysis of cultivated and wild grapevine (Vitis vinifera L.) accessions around the Mediterranean basin and Central Asia. BMC Plant Biol 18:1–14

    Article  Google Scholar 

  • Rohlf FJ (2002) Introduction to the exploration of multivariate biological data. JSTOR

  • Sabir A, Ikten H, Mutlu N, Sari D (2018) Genetic identification and conservation of local Turkish grapevine (Vitis vinifera L.) genotypes on the edge of extinction. Erwerbs-Obstbau 60:31–38

    Article  Google Scholar 

  • Segovia NI, González-Wevar CA, Haye PA (2020) Signatures of local adaptation in the spatial genetic structure of the ascidian Pyura chilensis along the southeast Pacific coast. Sci Rep 10:1–14

    Article  Google Scholar 

  • Simmonds NW, Smartt J (1976) Evolution of crop plants

  • Taheri F, Darzi Ramandi H (2020) Microsatellite markers analysis for the genetic characterization and relationships among some of Iranian local grapevine accessions (Vitis Vinifera L.). Int J Fruit Sci 20:S387–S404

    Article  Google Scholar 

  • Tamimi Z, Noormohammadi Z, Farahani F (2022) Genetic structure and SCoT marker-based differentiation of indigenous grape, Vitis venifera L. cultivars of Iran. Nucleus 81:1–7

    Google Scholar 

  • Taskesenlioglu MY, Ercisli S, Kupe M, Ercisli N (2022) History of grape in Anatolia and historical sustainable grape production in Erzincan agroecological conditions in Turkey. Sustainability 14:1496

    Article  Google Scholar 

  • This P, Jung A, Boccacci P, Borrego J, Costantini L, Crespan M, Eisenheld C, Grando M, Lacombe T, Lacou V (2004) Development of a common set of standard varieties and standardized method of scoring microsatellites markers for the analysis of grapevine genetic resources. Theor Appl Genet 109:1448–1458

    Article  CAS  PubMed  Google Scholar 

  • This P, Lacombe T, Thomas MR (2006) Historical origins and genetic diversity of wine grapes. Trends Genet 22:511–519

    Article  CAS  PubMed  Google Scholar 

  • Van der Pijl L (1982) Principles of dispersal in higher plants. Springer, Berlin

    Book  Google Scholar 

  • van Niekerk JM, Calitz FJ, Halleen F, Fourie PH (2010) Temporal spore dispersal patterns of grapevine trunk pathogens in South Africa. Eur J Plant Pathol 127:375–390

    Article  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, FitzGerald LM, Vezzulli S, Reid J (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2:e1326

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Xi D, Liu J, Chen K, Li H, Liu X, Yuan S, ERCIŞLI S, Lin H (2012) Genetic variability in Grapevine virus A from Vitis vinifera L. × Vitis labrusca L. in Sichuan, China. Turk J Biol 36:542–551

    Google Scholar 

  • Weising K, Nybom H, Pfenninger M, Wolff K, Kahl G (2005) DNA fingerprinting in plants: principles, methods, and applications. CRC Press, Boca Raton

    Google Scholar 

  • Yeh FC (1999) POPGENE (version 1.3. 1). Microsoft window-bases freeware for population genetic analysis. http://www.ualberta.ca/~fyeh/

  • Zhang X-X, Liu B-G, Li Y, Liu Y, He Y-X, Qian Z-H, Li J-X (2019) Landscape genetics reveals that adaptive genetic divergence in Pinus bungeana (Pinaceae) is driven by environmental variables relating to ecological habitats. BMC Evol Biol 19:1–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the Old World: the origin and spread of cultivated plants in West Asia, Europe and the Nile Valley. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MS: Conceptualization of the project and designed the research and wrote the manuscript; FK and MK collected the samples, analysis; all authors revised the manuscript. The author(s) read and approved the final manuscript.

Corresponding author

Correspondence to Masoud Sheidai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kajkolah, M., Sheidai, M. & Koohdar, F. Population and landscape genetic studies of indigenous table grapes (Vitis vinifera subsp. vinifera Hegi). Genet Resour Crop Evol 70, 2533–2553 (2023). https://doi.org/10.1007/s10722-023-01582-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-023-01582-z

Keywords

Navigation