Skip to main content
Log in

Molecular systematics and its role in cultivated Solanum spp. evolution

  • Review
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Whole-genome sequencing was done for cultivated Solanum tuberosum L. know the genetic variation and to predict the impact of domestication of these species on the environment. Extensive diversity studies were conducted in S. tuberosum species for deletion of deleterious genes and addition of valuable alleles from outside of their geographical origin followed by polyploidization to stabilize the introduced loci in cultivated potato. Only 14–16% of genes shared by Andean and North American species in present cultivars show that early crop improvement programs concentrated on very few genes only. But the signature of selection of cell cycle, carbohydrate metabolism, the shikimate pathway, glycoalkaloid biosynthesis, circadian rhythm, and reduced sexual fertility unclear in improved potato cultivars. The goal of this review paper is to present a historical overview and update of Solanum section Petota evolution, which will serve as a reference for the future breeding activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References:

  • Birhman RK, Hosaka K (2000) Production of inbred progenies of diploid potatoes using an S-locus inhibitor (Sli) gene, and their characterization. Genome 43(3):495–502

    Article  CAS  Google Scholar 

  • Bourke PM, Voorrips RE, Visser RG, Maliepaard C (2015) The double-reduction landscape in tetraploid potato as revealed by a high-density linkage map. Genetics 201(3):853–863

    Article  Google Scholar 

  • Bradeen JM, Haynes KG, and Kole C (2011). Introduction to potato. Genetics, genomics and breeding of potato, p.1–19

  • Bukasov SM (1933) Revolution in the breeding of the potato. Revolution in the breeding of the potato

  • Bradshaw JE (2007) The canon of potato science: 4 Tetrasomic Inheritance. Potato Res 50(3):219–222

    Article  Google Scholar 

  • Brown J, Caligari PDS, Mackay GR, Swan GEL (1984) The efficiency of seedling selection by visual preference in a potato breeding programme. J Agric Sci 103(2):339–346

    Article  Google Scholar 

  • Bukasov SM (1939) The Origin of Potato Species. Physis (buenos Aires) 18(1):1–1

    Google Scholar 

  • Bukasov SM (1971) Cultivated potato species. Flora Cultivated Plants 9:5–40

    Google Scholar 

  • Chase MW, Cowan RS, Hollingsworth PM, Van Den Berg C, Madriñán S, Petersen G, Seberg O, Jørgsensen T, Cameron KM, Carine M, Pedersen N (2007) A proposal for a standardised protocol to barcode all land plants. Taxon 56:295–299. https://doi.org/10.1002/tax.562004

    Article  Google Scholar 

  • De Jong H, Rowe PR (1971) Inbreeding in cultivated diploid potatoes. Potato Res 14(2):74–83

    Article  Google Scholar 

  • Dionne LA (1961) Cytoplasmic sterility in derivatives of Solanum demissum. Am Potato J 38:117–20. https://doi.org/10.1007/BF02870217

    Article  Google Scholar 

  • Dodds KS, and Paxman GJ (1962). The genetic system of cultivated diploid potatoes. Evolution 154–167

  • Ercolano MR, Carputo D, Li J, Monti L, Barone A, Frusciante L (2004) Assessment of genetic variability of haploids extracted from tetraploid (2 n= 4 x= 48) Solanum tuberosum. Genome 47(4):633–638

    Article  CAS  Google Scholar 

  • Fajardo D, Spooner DM (2011) Phylogenetic relationships of Solanum series Conicibaccata and related species in Solanum section Petota inferred from five conserved ortholog sequences. Syst Bot 36(1):163–170

    Article  Google Scholar 

  • Flagel L, Udall J, Nettleton D, Wendel J (2008) Duplicate gene expression in allopolyploid Gossypium reveals two temporally distinct phases of expression evolution. BMC Biol 6(1):1–9

    Article  Google Scholar 

  • Gavrilenko T (2011) Application of molecular cytogenetics in fundamental and applied research of potato. Science Publishers, Enfield, pp 184–206

    Google Scholar 

  • Gavrilenko T, Antonova O, Ovchinnikova A, Novikova L, Krylova E, Mironenko N, Pendinen G, Islamshina A, Shvachko N, Kiru S, Kostina L (2010) A microsatellite and morphological assessment of the Russian National cultivated potato collection. Genet Resour Crop Evol 57(8):1151–1164

    Article  Google Scholar 

  • Gavrilenko T, Antonova O, Shuvalova A, Krylova E, Alpatyeva N, Spooner DM, Novikova L (2013) Genetic diversity and origin of cultivated potatoes based on plastid microsatellite polymorphism. Genet Resour Crop Evol 60(7):1997–2015

    Article  CAS  Google Scholar 

  • Golmirzaie AM, Ortiz R, Atlin GN, Iwanaga M (1998) Inbreeding and true seed in tetrasomic potato. I. Selfing and open pollination in Andean landraces (Solanum tuberosum Gp. Andigena). Theor Appl Genet 97(7):1125–1128

    Article  Google Scholar 

  • Grun P (1990) The evolution of cultivated potatoes. Econ Bot 44(3):39–55

    Article  Google Scholar 

  • Grun P, Ochoa C, Capage D (1977) Evolution of cytoplasmic factors in tetraploid cultivated potatoes (Solanaceae). Am J Bot 64(4):412–420

    Article  Google Scholar 

  • Grun P (1979). Evolution of the cultivated potato: a cytoplasmic analysis. In Linnean Society symposium series

  • Hardigan MA, Laimbeer FPE, Newton L, Crisovan E, Hamilton JP, Vaillancourt B, Wiegert-Rininger K, Wood JC, Douches DS, Farré EM, Veilleux RE (2017) Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proc Natl Acad Sci 114(46):E9999–E10008

    Article  CAS  Google Scholar 

  • Haverkort AJ, Boonekamp PM, Hutten R, Jacobsen E, Lotz LAP, Kessel GJT, Visser RGF, van der Vossen EAG (2008) Societal costs of late blight in potato and prospects of durable resistance through cisgenic modification. Potato Res 51(1):47–57

  • Hawkes JG (19440. Potato Collecting Expeditions in Mexico and South America. II. Systematic classification of the collections. Potato Collecting Expeditions in Mexico and South America. II. Systematic classification of the collections

  • Hawkes JG (1958) Significance of wild species and primitive forms for potato breeding. Euphytica 7:257–270. https://doi.org/10.1007/BF00025267

    Article  Google Scholar 

  • Hawkes JG (1962) Introgression in certain wild potato species. Euphytica 11(1):26–35

    Article  Google Scholar 

  • Hawkes JG, Hawkes JG (1990) The potato: evolution, biodiversity and genetic resources. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Hijmans RJ, Jacobs M, Bamberg JB, Spooner DM (2003) Frost tolerance in wild potato species: Assessing the predictivity of taxonomic, geographic, and ecological factors. Euphytica 130(1):47–59

    Article  Google Scholar 

  • Hilali A, Lauer FI, Veilleux RE (1987) Reciprocal differences between hybrids of Solanum tuberosum Groups Tuberosum (haploid) and Phureja. Euphytica 36(2):631–639

    Article  Google Scholar 

  • Hirsch CN, Hirsch CD, Felcher K, Coombs J, Zarka D, Van Deynze A, De Jong W, Veilleux RE, Jansky S, Bethke P, Douches DS (2013) Retrospective view of North American potato (Solanum tuberosum L.) breeding in the 20th and 21st centuries. G3 Genes, Genomes, Genetics 3(6):1003–1013

    Google Scholar 

  • Hosaka K (2004) Evolutionary pathway of T-type chloroplast DNA in potato. Am J Potato Res 81(2):153–158

    Article  Google Scholar 

  • Hosaka K, Sanetomo R (2012) Development of a rapid identification method for potato cytoplasm and its use for evaluating Japanese collections. Theor Appl Genet 125(6):1237–1251

    Article  CAS  Google Scholar 

  • Hosaka K, Sanetomo R (2014) Application of a PCR-based cytoplasm genotyping method for phylogenetic analysis in potato. Am J Potato Res 91(3):246–253

    Article  Google Scholar 

  • Huamán Z, Spooner DM (2002) Reclassification of landrace populations of cultivated potatoes (Solanum sect. Petota). Am J Bot 89(6):947–965

    Article  Google Scholar 

  • Jackson SA, Hanneman RE (1999) Crossability between cultivated and wild tuber-and non-tuber-bearing Solanums. Euphytica 109:51–67. https://doi.org/10.1023/A:1003710817938

    Article  Google Scholar 

  • Jansky SH, Dempewolf H, Camadro EL, Simon R, Zimnoch-Guzowska E, Bisognin DA, and Bonierbale M (2013) A case for crop wild relative preservation and use in potato

  • Juzepchuk SV (1929) A contribution to the question of the origin of the potato

  • Lechnovich VS (1971) Cultivated potato species. In: Bukasov SM (ed) Flora of cultivated plants, chap 2, vol IX. Kolos, Leningrad, pp 41–304

    Google Scholar 

  • Lössl A, Götz M, Braun A, Wenzel G (2000) Molecular markers for cytoplasm in potato: male sterility and contribution of different plastid-mitochondrial configurations to starch production. Euphytica 116(3):221–230

    Article  Google Scholar 

  • Maris M (1989) Analysis of an incomplete diallel cross among three ssp. tuberosum varieties and seven long-day adapted ssp. andigena clones of the potato (Solanum tuberosum L.). Euphytica 41(1):163–182

    Article  Google Scholar 

  • Marks GE (1955) Cytogenetic studies in tuberous Solanum species I. Genomic differentiation in the group demissa. J Genet 53(2):262–269

    Article  Google Scholar 

  • McKey DB, Elias M, Pujol B, and Duputié A (2012). 17 Ecological Approaches to Crop Domestication. Biodiversity in agriculture: domestication, evolution, and sustainability 377

  • Mihovilovich E, Sanetomo R, Hosaka K, Ordoñez B, Aponte M, Bonierbale M (2015) Cytoplasmic diversity in potato breeding: case study from the International Potato Center. Mol Breeding 35(6):1–10

    Article  CAS  Google Scholar 

  • Miller JT, and Spooner DM (1996). Introgression of Solanum chacoense (Solanum sect. Petota): upland populations reexamined. Syst Bot 461–475

  • Mori K, Asano K, Tamiya S, Nakao T, Mori M (2015) Challenges of breeding potato cultivars to grow in various environments and to meet different demands. Breed Sci 65(1):3–16

    Article  Google Scholar 

  • Nakamura S, Hosaka K (2010) DNA methylation in diploid inbred lines of potatoes and its possible role in the regulation of heterosis. Theor Appl Genet 120(2):205–214

    Article  CAS  Google Scholar 

  • Oliemans WH (1988). The bread of the poor. The history of the potato in the midst of heretics, monastics and church princes. The Hague, SDU. The bread of the poor. The history of the potato amidst heretics, monks, and princes of the church

  • Ortiz R, Iwanaga M, Peloquin SJ (1993) Male sterility and 2n pollen in 4x progenies derived from 4x × 2x and 4x × 4x crosses in potatoes. Potato Res 36:227–236. https://doi.org/10.1007/BF02360531

    Article  Google Scholar 

  • Ortiz R (1998) Potato breeding via ploidy manipulations. Plant Breeding Reviews 16:15–86

    Google Scholar 

  • Ortiz R (2001). The state of the use of potato genetic diversity. Broadening the genetic base of crop production. CABI Publishing, Wallingford p. 181–200.

  • Phumichai C, Hosaka K (2006) Cryptic improvement for fertility by continuous selfing of diploid potatoes using Sli gene. Euphytica 149(1):251–258

    Article  CAS  Google Scholar 

  • Ravi M, Marimuthu MPA, Tan EH, Maheshwari S, Henry IM, Marin-Rodriguez B, Urtecho G, Tan J, Thornhill K, Zhu F, Panoli A (2014) A haploid genetics toolbox for Arabidopsis thaliana. Nat Commun 5:5334

    Article  CAS  Google Scholar 

  • Ross CW (1986) The effect of subsoiling and irrigation on potato production. Soil and Tillage Research 7(4):315–325

    Article  Google Scholar 

  • Ross H (1986b). Potato breeding — problems and perspectives. J Plant Breed [Suppl 13]

  • Rybin VA (1929) Karyological investigation on some wild growing and indigenous cultivated potatoes of America. Trudy Po Prikladnoj Botanike Genetike i Selekcii 20:655–720

    Google Scholar 

  • Salaman RN (1946) The early European potato: its character and place of origin. Bot J Linn Soc 53(348):1–27

    Google Scholar 

  • Sanetomo R, Gebhardt C (2015) Cytoplasmic genome types of European potatoes and their effects on complex agronomic traits. BMC Plant Biol 15(1):1–16

    Article  CAS  Google Scholar 

  • Sanetomo R, Ono S, Hosaka K (2011) Characterization of crossability in the crosses between Solanum demissum and S. tuberosum, and the F1 and BC1 progenies. Am J Potato Res 88(6):500–510

    Article  Google Scholar 

  • Sanetomo R, and Nashiki A (2021). Identification of the tetrad-sterility-causing Solanum stoloniferum cytoplasm in interspecific hybrids with S. tuberosum

  • Sanford JC, Hanneman RE (1982) Intermating of potato haploids and spontaneous sexual polyploidization—effects on heterozygosity. Am Potato J 59(9):407–414

    Article  Google Scholar 

  • Schmiediche PE, Hawkes JG, Ochoa CM (1982) The breeding of the cultivated potato species solanum x juzepczukii and S. x curtilobum II. The resynthesis of S. x juzepczukii and S. x curtilobum. Euphytica 31(3):695–708

    Article  Google Scholar 

  • Simmonds NW (1964) Observations on potato callus and adventitious shoot formation. Am Potato J 41(5):129–136

    Article  Google Scholar 

  • Song YS, Schwarzfischer A (2008) Development of STS markers for selection of extreme resistance (Ry sto) to PVY and maternal pedigree analysis of extremely resistant cultivars. Am J Potato Res 85(2):159–170

    Article  CAS  Google Scholar 

  • Spooner DM, van den Berg RG (1992) An analysis of recent taxonomic concepts in wild potatoes (Solarium sect. Petota). Genet Resour Crop Evol 39(1):23–37

    Article  Google Scholar 

  • Spooner DM, McLean K, Ramsay G, Waugh R, Bryan GJ (2005) A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proc Natl Acad Sci 102(41):14694–14699

    Article  CAS  Google Scholar 

  • Spooner DM, Núñez J, Trujillo G, del Rosario Herrera M, Guzmán F, Ghislain M (2007) Extensive simple sequence repeat genotyping of potato landraces supports a major reevaluation of their gene pool structure and classification. Proc Natl Acad Sci 104(49):19398–19403

    Article  CAS  Google Scholar 

  • Spooner DM, Ghislain M, Simon R, Jansky SH, Gavrilenko T (2014) Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. Bot Rev 80(4):283–383

    Article  Google Scholar 

  • Spooner DM, and Bamberg JB (1991). Profile: the Inter-Regional Potato Introduction Project (IR-1), US center for potato germplasm. Diversity (USA)

  • Spooner DM, Jansky SH, and Simon R (2009). Tests of taxonomic and biogeographic predictivity: resistance to disease and insect pests in wild relatives of cultivated potato

  • Sukhotu T, Kamijima O, Hosaka K (2004) Nuclear and chloroplast DNA differentiation in Andean potatoes. Genome 47(1):46–56

    Article  CAS  Google Scholar 

  • Sukhotu T, Kamijima O, Hosaka K (2006) Chloroplast DNA variation in the most primitive cultivated diploid potato species Solanum stenotomum Juz. et Buk. and its putative wild ancestral species using high-resolution markers. Genet Resour Crop Evol 53(1):53–63

    Article  CAS  Google Scholar 

  • Tan EH, Henry IM, Ravi M, Bradnam KR, Mandakova T, Marimuthu MP, Korf I, Lysak MA, Comai L, Chan SW (2015) Catastrophic chromosomal restructuring during genome elimination in plants. Elife 4:e06516

    Article  Google Scholar 

  • Ugent D (1970) Solanum raphanifolium, a Peruvian wild potato species of hybrid origin. Bot Gaz 131(3):225–233

    Article  Google Scholar 

  • Ugent D, Dillehay T, Ramirez C (1987) Potato remains from a late Pleistocene settlement in southcentral Chile. Econ Bot 41(1):17–27

    Article  Google Scholar 

  • Watanabe K (2015) Potato genetics, genomics, and applications. Breed Sci 65(1):53–68

    Article  CAS  Google Scholar 

  • Wilkinson MJ, Bennett ST, Clulow SA, Allainguillaume J, Harding K, Bennett MD (1995) Evidence for somatic translocation during potato dihaploid induction. Heredity 74(2):146–151

    Article  Google Scholar 

  • Zimmerer KS (2014) Conserving agrobiodiversity amid global change, migration, and nontraditional livelihood networks: the dynamic uses of cultural landscape knowledge. Ecol Soc 19(2)

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinaykumar Rachappanavar.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

We declare that, we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper and the following financial interests/personal relationships which may be considered as potential competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rachappanavar, V. Molecular systematics and its role in cultivated Solanum spp. evolution. Genet Resour Crop Evol 70, 1–11 (2023). https://doi.org/10.1007/s10722-022-01422-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-022-01422-6

Keywords

Navigation