Skip to main content

Advertisement

Log in

Horticultural crops tackling stresses: genetic and epigenetic alterations

  • Review
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Food is indispensable for fulfilling the nutritional requirements of living beings. The principal source of food, nutrition and feed are horticultural commodities. Grains, pulses, fruits, vegetables, flowers, ornamental plants and medicinal plants are just a few of the important horticulture crops that are widely grown as cash crops by farmers and to meet these needs. However, eventually, horticulture crops are facing major challenges to enhance the productivity of field crops due to changes in environmental conditions. Crops are affected by many environmental stresses including both biotic as well as abiotic. Environmental stresses affect the overall growth, development, physiology and metabolism of plants which leads to the loss of crop quality produce and yield. Old approaches to decipher the mechanism of stress management and overall improvement in plants are involved with tedious experiments, long breeding programs and different cultivation environments. With the advancement in the field of bioinformatics and next-generation sequencing technologies, it has become possible to study the molecular mechanisms of plants coping with stresses. It is the need of the hour to investigate the mechanism of stress tolerance in economically important horticultural crops. This area has sought the attention of horticulturists as many regions are under the spell of environmental alterations and climate change. Thus, this review takes up the genetic and epigenetic aspects of stress management in high-value horticultural fruit and vegetable plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MSAP:

Methylation sensitive AFLP

NB-LRR:

Nuclear binding-leucine-rich repeat

CHG:

Methylation on Chromomethyltransferase 3 (CMT 3)

HAT:

Hitched to an acetyltransferase

KRAB:

Krupel-associated box

ETI:

Effector-triggered immunity

ROS:

Reactive oxygen species

MAPKs:

Mitogen-activated protein kinases

SA:

Salicylic acid

JA:

Jasmonic acid

ET:

Ethylene

ABA:

Abscisic acid

DNA:

Deoxyribonucleic acid

RNA:

Ribonucleic acid

siRNA:

Small interfering RNA

TE:

Transposable element

RdDM:

RNA mediated DNA methylation

LEA:

Late embryogenesis abundant proteins

DREB:

Dehydration responsive element binding proteins

CBF:

c-repeat binding factors

SFs:

Signalling factors

HSPs:

Heat shock proteins

PGPB:

Plant growth promoting bacteria

References

  • Aamir M, Singh VK, Dubey MK, Kashyap SP, Zehra A, Upadhyay RS, Singh S (2018) Structural and functional dissection of differentially expressed tomato WRKY transcripts in host defense response against the vascular wilt pathogen (Fusarium oxysporum f. sp. lycopersici). PLoS ONE 13. https://doi.org/10.1371/journal.pone.0193922

  • Ahanger AM, Agarwal MR (2017) Potassium improves antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L.). Protoplasma 254(4):1471–1486

    Article  CAS  PubMed  Google Scholar 

  • Ahanger AM, Tomar SN, Tittal M, Argal S, Agarwal MR (2017) Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiol Mol Biol Plants 23(4):731–744

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahanger AM, Alyemeni NM, Wijaya L, Alamri AS, Alam P, Ashraf M, Ahmad P (2018) Potential of exogenously sourced kinetin in protecting Solanum lycopersicum from NaCl-induced oxidative stress through up-regulation of the antioxidant system, ascorbate-glutathione cycle and glyoxalase system. PLoS ONE 13(9):e0202175

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahanger AM, Qin C, Maodong Q, Dong XX, Ahmad P, Abd-Allah FE, Zhang L (2019a) Spermine application alleviates salinity induced growth and photosynthetic inhibition in Solanum lycopersicum by modulating osmolyte and secondary metabolite accumulation and differentially regulating antioxidant metabolism. Plant Physiol Biochem 144:1–13

    Article  CAS  PubMed  Google Scholar 

  • Ahanger AM, Qin C, Begum N, Maodong Q, Dong XX, El-Esawi M, El-Shiekh AM, Alatar AA, Zhang L (2019b) Nitrogen availability prevents oxidative effects of salinity on wheat growth and photosynthesis by up-regulating the antioxidants and osmolytes metabolism, and secondary metabolite accumulation. BMC Plant Biol 19:1–12

    Article  CAS  Google Scholar 

  • Ahanger AM, Qi M, Huang Z, Xu X, Begum N, Qin C, Zhang C, Ahmad DN, Mustafa NS, Ashraf M, Zhang L (2021) Improving growth and photosynthetic performance of drought stressed tomato by application of nano-organic fertilizer involves up-regulation of nitrogen, antioxidant and osmolyte metabolism. Ecotoxicol Environ Saf. https://doi.org/10.1016/j.ecoenv.2021.112195

    Article  PubMed  Google Scholar 

  • Ahanger AM, Tyagi RS, Wani RM, Ahmad P (2014) Drought tolerance: roles of organic osmolytes, growth regulators and mineral nutrients. In: Ahmad P, Wani RM (eds) Physiological mechanisms and adaptation strategies in plants under changing environment, Volume Ist. Springer, Berlin, pp 25–56. ISBN 978-1-4614-8591-9

  • Ahmad P, Ahanger AM, Alam P, Alyemeni NM, Wijaya L, Ali S, Ashraf M (2019) Silicon (Si) supplementation alleviates NaCl toxicity in mung bean [Vigna radiata (L.) wilczek] through the modifications of physiobiochemical attributes and key antioxidant enzymes. J Plant Growth Regul 38(1):70–82

    Article  CAS  Google Scholar 

  • Ahmar S, Gill RA, Jung KH, Faheem A, Qasim MU, Mubeen M, Zhou W (2020) Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. Int J Mol Sci 21(7):2590

    Article  CAS  PubMed Central  Google Scholar 

  • Ai TN, Naing AH, Yun BW, Kim CK (2018) Overexpression of RsMYB1 enhances heavy metal stress tolerance in transgenic petunia by elevating the transcript levels of stress tolerant and antioxidant genes. Biorxiv. https://doi.org/10.1101/286849

  • Al-Lawati A, Al-Bahry S, Victor R, Al-Lawati AH, Yaish MW (2016) Salt stress alters DNA methylation levels in alfalfa (Medicago spp). Genet Mol Res 15(1):1–16

    Article  Google Scholar 

  • Amaral J, Ribeyre Z, Vigneaud J, Sow MD, Fichot R, Messier C, Pinto G, Nolet P, Maury S (2020) Advances and promises of epigenetics for forest trees. Forests. https://doi.org/10.3390/f11090976

    Article  Google Scholar 

  • Andreotti C (2020) Management of abiotic stress in horticultural crops: spotlight on biostimulants. Agronomy. https://doi.org/10.3390/agronomy10101514

    Article  Google Scholar 

  • Artur MAS, Zhao T, Ligterink W, Schranz E, Hilhorst HWM (2019) Dissecting the genomic diversification of late embryo-genesis abundant (LEA) protein gene families in plants. Genome Biol Evol 11:459–471

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad RM (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Azar SC, Mombeni EG, Yousefi M, Birhan M (2020) CRISPR/Cas9 gene editing technology and its application to the coronavirus disease (COVID-19), a review. J Life Sci Biomed 10(1):1–9

    Article  Google Scholar 

  • Banerjee A, Roychoudhury A (2017) The gymnastics of epigenomics in rice. Plant Cell Rep 37:25–49

    Article  PubMed  Google Scholar 

  • Baranek M, Krizan B, Ondrusikova E, Pidra M (2010) DNAmethylation changes in grapevine somaclones following in vitro cultures and thermotherapy. Plant Cell Tissue Organ Cult 101(1):11–22. https://doi.org/10.1007/s11240-009-9656-1

    Article  CAS  Google Scholar 

  • Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baulcombe DC, Dean C (2014) Epigenetic regulation in plant responses to the environment. Cold Spring Harb Perspect Biol 6:a019471. https://doi.org/10.1101/cshperspect.a019471

    Article  PubMed  PubMed Central  Google Scholar 

  • Begum N, Ahanger AM, Su Y, Lei Y, Mustafa ASN, Ahmad P, Zhang L (2019) Improved drought tolerance by AMF inoculation in maize (Zea mays) involves physiological and biochemical implications. Plants 8(8):579. https://doi.org/10.3390/plants8120579

    Article  CAS  PubMed Central  Google Scholar 

  • Begum N, Ahanger AM, Zhang L (2020) AMF inoculation and phosphorus supplementation alleviates drought induced growth and photosynthetic decline in Nicotiana tabacum by up-regulating antioxidant metabolism and osmolyte accumulation. Environ Exp Bot 176:104088. https://doi.org/10.1016/j.envexpbot.2020.104088

    Article  CAS  Google Scholar 

  • Bisbis MB, Gruda N, Blanke M (2018) Potential impacts of climate change on vegetable production and product quality—a review. J Clean Prod 170:1602–1620

    Article  CAS  Google Scholar 

  • Bossdorf O, Richards CL, Pigliucci M (2008a) Epigenetics for ecologists. Ecol Lett 11(2):106–115

    PubMed  Google Scholar 

  • Bossdorf O, Richards CL, Pigliucci M (2008b) Epigenetics for ecologists. Ecol Lett 11:106–115

    PubMed  Google Scholar 

  • Boyko A, Kovalchuk I (2008) Epigenetic control of plant stress response. Environ Mol Mutagen 49(1):61–72

    Article  CAS  PubMed  Google Scholar 

  • Boyko A, Blevins T, Yao Y, Golubov A, Bilichak A, Ilnytskyy Y (2010) Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of dicer-like proteins. PLoS ONE 5:e9514. https://doi.org/10.1371/journal.pone.0009514

    Article  PubMed  PubMed Central  Google Scholar 

  • Boyle P, Clement K, Gu H, Smith ZD, Ziller M, Fostel JL, Holmes L, Meldrim J, Kelley F, Gnirke A, Meissner A (2012) Gel-free multiplexed reduced representation bisulfite sequencing for large-scale DNA methylation profiling. Genome Biol 13:R92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brakebusch C (2021) CRISPR genome editing: how to make a fantastic method even better. Cells. https://doi.org/10.3390/cells10020408

    Article  PubMed  PubMed Central  Google Scholar 

  • Butler NM, Atkins PA, Voytas DF, Douches DS (2015) Generation and Inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLoS ONE. https://doi.org/10.1371/journal.pone.0144591

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan SWL, Henderson IR, Jacobsen SE (2005) Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 6:351–360. https://doi.org/10.1038/nrg1601

    Article  CAS  PubMed  Google Scholar 

  • Chang YN, Zhu C, Jiang J, Zhang H, Zhu JK, Duan CG (2019) Epigenetic regulation in plant abiotic stress responses. J Integr Plant Biol 62(5):563–580. https://doi.org/10.1111/jipb.12901

    Article  CAS  Google Scholar 

  • Cheng S, Xie X, Xu Y, Zhang C, Wang X, Zhang J, Wang U (2016) Genetic transformation of a fruit-specific, highly expressed stilbene synthase gene from Chinese wild Vitis quinquangularis. Planta 243:1041–1053

    Article  CAS  PubMed  Google Scholar 

  • Cheng JF, Niu QF, Zhang B, Chen KS, Yang RH, Zhu J-K, Zhang YJ, Lang ZB (2018) Downregulation of RdDM during strawberry fruit ripening. Genome Biol 19:212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ci D, Song Y, Tian M, Zhang D (2015) Methylation of miRNA genes in the response to temperature stress in Populus simonii. Front Plant Sci 6:921. https://doi.org/10.3389/fpls.2015.00921

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai F, Zhang C, Jiang X, Kang M, Yin X, Lu P, Zhang X, Zheng Y, Gao J (2012) RhNAC2 and RhEXPA4 are involved in the regulation of dehydration tolerance during the expansion of rose petals. Plant Physiol 160:2064–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dasgupta P, Chaudhuri S (2019) Analysis of DNA methylation profile in plants by chop-PCR. In: Gassmann W (eds) Plant innate immunity. Methods in molecular biology 1991. https://doi.org/10.1007/978-1-4939-9458-8_9

  • Dong H, Chen Q, Dai Y, Hu W, Zhang S, Huang X (2021) Genome-wide identification of PbrbHLH family genes, and expression analysis in response to drought and cold stresses in pear (Pyrus bretschneideri). BMC Plant Biol 21:86. https://doi.org/10.1186/s12870-021-02862-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgerton MD (2009) Increasing crop productivity to meet global needs for feed, food and fuel. Plant Physiol 149:7–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Sharkawy I, Liang D, Xu KN (2015) Transcriptome analysis of an apple (Malus×domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation. J Exp Bot 66:7359–7376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan Q, Song A, Jiang Zhang T, Sun H, Wang Y (2016) CmWRKY1 enhances the dehydration tolerance of chrysanthemum through the regulation of ABA-associated genes. PLoS ONE 11:e0150572

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuchs J, Schubert I (2012) Chromosomal distribution and functional interpretation of epigenetic histone marks in plants. In: Bass HW, Birchler JA (eds) Plant cytogenetics: genome structure and chromosome function. Springer, New York, pp 231–253

    Chapter  Google Scholar 

  • Fuchs J, Demidov D, Houben A, Schubert I (2006) Chromosomal histone modification patterns—from conservation to diversity. Trends Plant Sci 11(4):199–208

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto R, Sasaki T, Ishikawa R, Osabe K, Kawanabe T, Dennis ES (2012) Molecular mechanisms of epigenetic variation in plants. Int J Mol Sci 13(8):9900–9922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallusci P, Hodgman C, Teyssier E, Seymour GB (2016) DNA methylation and chromatin regulation during fleshy fruit development and ripening. Front Plant Sci 7:807

    Article  PubMed  PubMed Central  Google Scholar 

  • Gapp K, Von Ziegler L, Tweedie-Cullen RY, Mansuy IM (2014) Early life epigenetic programming and transmission of stress-induced traits in mammals: how and when can environmental factors influence traits and their transgenerational inheritance? Bioessays 36:491–502. https://doi.org/10.1002/bies.201300116

    Article  PubMed  Google Scholar 

  • Geng J, Liu JH (2018) The transcription factor CsbHLH18 of sweet orange functions in modulation of cold tolerance and homeostasis of reactive oxygen species by regulating the antioxidant gene. J Exp Bot 69:2677–2692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng D, Chen P, Shen X, Zhang Y, Li X, Jiang L, Xie Y, Niu C, Zhang J, Huang X, Ma F, Guan Q (2018) MdMYB88 and MdMYB124 enhance drought tolerance by modulating root vessels and cell walls in apple. Plant Physiol Preview. https://doi.org/10.1104/pp.18.00502

    Article  Google Scholar 

  • Godwill EA (2014) Genetic engineering on microorganism: the ecological and bioethical implications. Eur J Biotechnol Biosci 1(3):27–33

    Google Scholar 

  • Gonzalez RM, Iusem ND (2014) Twenty years of research on Asr (ABA-stress-ripening) genes and proteins. Planta 239:941–949

    Article  CAS  PubMed  Google Scholar 

  • Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins preventprotein aggregation due to water stress. Biochem J 388:151–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J-E, Hu ZL, Yu XH, Li AZ, Li FF, Wang YS, Tian SB, Chen GP (2018a) A histone deacetylase gene, SlHDA3, acts as a negative regulator of fruit ripening and carotenoid accumulation. Plant Cell Rep 37:125–135

    Article  CAS  PubMed  Google Scholar 

  • Guo R, Qiao H, Zhao J, Wang X, Tu M, Guo C, Wan R, Li Z, Wang X (2018b) The grape VlWRKY3 gene promotes abiotic and biotic stress tolerance in transgenic Arabidopsis thaliana. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00545

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo L, Li J, He J (2020) A class I cytosolic HSP20 of rice enhances heat and salt tolerance in different organisms. Sci Rep 10:1383. https://doi.org/10.1038/s41598-020-58395-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Sun B, He H, Zhang Y, Tian H, Wnag B (2021) Current understanding of bHLH transcription factors in plant abiotic stress tolerance. Int J Mol Sci. https://doi.org/10.3390/ijms22094921

    Article  PubMed  PubMed Central  Google Scholar 

  • Hao Z, Fan C, Cheng T, Su Y, Wei Q, Li G (2015) Genome-wide identification, characterization and evolutionary analysis of long intergenic noncoding RNAs in cucumber. PLoS ONE 10:e0121800

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni NM, Wani SA, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heard E, Martienssen RA (2014) Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157:95–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hille LT, Kleinstiver BP (2021) Plant genome editing branches out. Nat Plants 7:4–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61(6):1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Hou H, Zhao L, Zheng X, Gautam M, Yue M, Hou J, Li L (2019) Dynamic changes in histone modification are associated with upregulation of Hsf and rRNA genes during heat stress in maize seedlings. Protoplasma 256(5):1245–1256

    Article  CAS  PubMed  Google Scholar 

  • Huang TK, Puchta H (2021) Novel CRISPR/Cas applications in plants: from prime editing to chromosome engineering Teng-Kuei. Transgenic Res. https://doi.org/10.1007/s11248-021-00238-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang H, Liu RE, Niu QF, Tang K, Zhang B, Zhang H, Chen KS, Zhu J-K, Lang ZB (2019) Global increase inDNAmethylation during orange fruit development and ripening. Proc Natl Acad Sci USA 116:1430–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huff JT, Zilberman D (2012) Regulation of biological accuracy, precision, and memory by plant chromatin organization. Curr Opin Genet Dev 22:132–138

    Article  CAS  PubMed  Google Scholar 

  • Humanes JG, Wang Y, Liang Z, Shan Q, Ozuna CV, Leon SSA, Baltes NJ, Starker C, Barro F, Gao C, Voytas D (2017) High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J 89:1251–1262

    Article  Google Scholar 

  • Iwasaki M (2015) Chromatin resetting mechanisms preventing transgenerational inheritance of epigenetic states. Front Plant Sci 6:380. https://doi.org/10.3389/fpls.2015.00380

    Article  PubMed  PubMed Central  Google Scholar 

  • Jatav SK, Agarwal MR, Tomar SN, Tyagi RS (2014) Nitrogen metabolism, growth and yield responses of wheat (Triticum aestivum L.) to restricted water supply and varying potassium treatments. J Indian Bot Soc 93(3 & 4):177–189

    Google Scholar 

  • Jha UC, Nayyar H, Jha R, Khurshid M, Zhou M, Mantri N, Siddique KH (2020) Long non-coding RNAs: emerging players regulating plant abiotic stress response and adaptation. BMC Plant Biol 20(1):1–20

    Article  Google Scholar 

  • Jia H, Zhang Y, Orbovi V, Xu J, White FF, Jones JB, Wang N (2016) Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol J 15:817–823

    Article  Google Scholar 

  • Kalisz S, Purugganan MD (2004) Epialleles via DNA methylation: consequences for plant evolution. Trends Ecol Evol 19:309–314. https://doi.org/10.1016/j.tree.2004.03.034

    Article  PubMed  Google Scholar 

  • Kaur B, Bhatia D, Mavi GS (2021) Eighty years of gene-for-gene relationship and its applications in identification and utilization of R genes. J Genet 100(2):1–17

    Article  Google Scholar 

  • Khan A, Sirajuddin ZXQ, Javed MT, Khan KS, Bano A, Shen RF, Masood S (2016) Bacillus pumilus enhances tolerance in rice (Oryza sativa L.) to combined stresses of NaCl and high boron due to limited uptake of Na+. Environ Exp Bot 124:120–129

    Article  CAS  Google Scholar 

  • Kim JM, To TK, Ishida J, Matsui A, Kimura H, Seki M (2012) Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana. Plant Cell Physiol 53(5):847–856

    Article  CAS  PubMed  Google Scholar 

  • Kou X, Xiong C, Wang D, Sun Y, Wang P, Wu J, Zhang S (2020) Comparative analysis of bHLH transcription factors in five Rosaceae species and expression analysis of PbbHLHs in response to drought stress in pear. Res Sq. https://doi.org/10.21203/rs.3.rs-78164/v1

    Article  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    Article  CAS  PubMed  Google Scholar 

  • Lang ZB, Wang YH, Tang K, Tang DG, Datsenka T, Cheng JF, Zhang YJ, Handa AK, Zhu J-K (2017) Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. Proc Natl Acad Sci USA 114:E4511–E4519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lata R, Chowdhury S, Gond SK, White JF (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol 66:268–276

    Article  CAS  PubMed  Google Scholar 

  • Latzel V, Rendina GAP, Rosenthal J (2016) Epigenetic memory as a basis for intelligent behavior in clonal plants. Front Plant Sci. https://doi.org/10.3389/fpls.2016.01354

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawlor DW (2013) Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. J Exp Bot 64(1):83–108

    Article  CAS  PubMed  Google Scholar 

  • Lee PY, Giorgi MF, Lohse M, Kvederaviciute K, Klages S, Usadel B, Meskiene I, Reinhardt R, Hincha KD (2013) Transcriptome sequencing and microarray design for functional genomics in the extremophile Arabidopsis relative Thellungiella salsuginea (Eutrema salsugineum). BMC Genom 14:793

    Article  CAS  Google Scholar 

  • Lennartsson A, Ekwall K (2009) Histone modification patterns and epigenetic codes. Biochim Biophys Acta: BBA Gen Subj 1790(9):863–868

    Article  CAS  Google Scholar 

  • Leu P, Yu S, Zhu N, Chen Y-R, Zhou BY, Pan Y, Tzeng D, Fabi JP, Argyris J, Garcia-Mas J (2018) Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nat Plants 4:784–791

    Article  Google Scholar 

  • Li L, Eichten SR, Shimizu R, Petsch K, Yeh CT, Wu W, Chettoor AM, Givan SA, Cole RA, Fowler JE, Evans MM, Scanlon MJ, Yu J, Schnable PS, Timmermans MC, Springer NM, Muehlbauer GJ (2014) Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biol 15:R40

    Article  PubMed  PubMed Central  Google Scholar 

  • Li P, Song A, Gao C, Jiang J, Chen S, Fang W (2015) The overexpression of a chrysanthemum WRKY transcription factor enhances aphid resistance. Plant Physiol Biochem 95:26–34

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Wang W, Wang W, Zhang G, Liu Y, Wang Y, Wang W (2018) Wheat F-box protein gene TaFBA1 is involved in plant tolerance to heat stress. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00521

    Article  PubMed  PubMed Central  Google Scholar 

  • Li R, Liu C, Zhao R, Wang L, Chen L, Yu W, Zhang S, Sheng J, Shen L (2019) CRISPR/Cas9-Mediated SlNPR1 mutagenesis reduces tomato plant drought tolerance. BMC Plant Biol. https://doi.org/10.1186/s12870-018-1627-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin R, Zou T, Mei Q, Wang Z, Zhang M, Jian S (2021) Genome-wide analysis of the late embryogenesis abundant (LEA) and abscisic acid-, stress-, and ripening-induced (ASR) Gene superfamily from Canavalia rosea and their roles in salinity/alkaline and drought tolerance. Int J Mol Sci. https://doi.org/10.3390/ijms22094554

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu B, Ouyang Z, Zhang Y, Li X, Hong Y, Huang L, Liu S, Zhang H, Li D, Song F (2014) Tomato NAC transcription factor SlSRN1 positively regulates defense response against biotic stress but negatively regulates abiotic stress response. PLoS ONE 9:e102067

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Feng L, Li J, He Z (2015) Genetic and epigenetic control of plant heat responses. Front Plant Sci 6:267. https://doi.org/10.3389/fpls.2015.00267

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Huang W, Xian Z, Hu N, Lin D, Ren H, Chen J, Su D, Li Z (2017) Overexpression of SlGRAS40 in tomato enhances tolerance to abiotic stresses and influences auxin and gibberellin signaling. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01659

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu F, Li X, Wang M, Wen J, Yi B, Shen J, Ma C, Fu T, Tu J (2018) Interactions of WRKY15 and WRKY33 transcription factors and their roles in the resistance of oilseed rape to Sclerotinia infection. Plant Biotechnol J 16:911–925

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Xing M, Yang W, Mu X, Wang X, Lu F, Wang Y, Zhang L (2019) Genome-wide identification of and functional in-sights into the late embryogenesis abundant (LEA) gene family in bread wheat (Triticum aestivum). Sci Rep 9:13375

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu X, Hyun TK (2021) The role of epigenetic modifications in plant responses to stress. Bot Serb 45(1):3–12

    Article  Google Scholar 

  • Lukens LN, Zhan S (2007) The plant genome’s methylation status and response to stress: implications for plant improvement. Curr Opin Plant Biol 10(3):317–322

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Liu C, Li Z, Ran Q, Xie G, Wang B, Fang S, Chu J, Zhang J (2018) ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development. Plant Physiol. https://doi.org/10.1104/pp.18.00436

    Article  PubMed  PubMed Central  Google Scholar 

  • Malnoy M, Viola R, Jung MH, Koo OJ, Kim S, Kim JS, Velasco R, Nagamangala KC (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904

    Article  PubMed  PubMed Central  Google Scholar 

  • Manage DP, Morrissey YC, Stickel AJ, Lauzon J, Atrazhev A, Acker JP, Pilarski LM (2010) On-chip PCR amplification of genomic and viral templates in unprocessed whole blood. Microfluid Nanofluid. https://doi.org/10.1007/s10404-010-0702-4

    Article  Google Scholar 

  • Manning K, Teor M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB (2006) Anaturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952

    Article  CAS  PubMed  Google Scholar 

  • Martienssen R, Barkan A, Taylor WC, Freeling M (1990) Somatically heritable switches in the DNA modification of Mu transposable elements monitored with a suppressible mutant in maize. Genes Dev 4:331–343. https://doi.org/10.1101/gad.4.3.331

    Article  CAS  PubMed  Google Scholar 

  • Martins LDV, Peron AP, Lopes ÂCDA, Gomes RLF, Carvalho RD, Feitoza LDL (2018) Heterochromatin distribution and histone modification patterns of H4K5 acetylation and H3S10 phosphorylation in Capsicum L. Crop Breed Appl Biotechnol 18:161–168

    Article  CAS  Google Scholar 

  • Mathivanan S, Kalaikandhan R, Chidambaram ALA, Sundramoorthy P (2013) Effect of vermicompost on the growth and nutrient status in groundnut (Arachis hypogaea L.). Asian J Plant Sci Res 3(2):15–22

    Google Scholar 

  • Matsui A, Nguyen AH, Nakaminami K, Seki M (2013) Arabidopsis non-coding RNA regulation in abiotic stress responses. Int J Mol Sci 14(11):22642–22654

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazier M, Flamain F, Nicolai M, Sarnette V, Caranta C (2011) Knock-down of both eIF4E1 and eIF4E2 genes confers broad-spectrum resistance against potyviruses in tomato. PLoS ONE 6:1–10

    Article  Google Scholar 

  • Mercado JA, Barcelo M, Pliego C, Rey M, Caballero JL, Munoz- Blanco J, Ruano-Rosa D, Lopez-Herrera C, Santos B, Romero-Munoz F, Pliego-Alfaro F (2015) Expression of the b-1,3-glucanase gene bgn13,1 from Trichoderma harzianum in strawberry increases tolerance to crown rot diseases but interferes with plant growth. Transgenic Res 24:979–989

    Article  CAS  PubMed  Google Scholar 

  • Miao H, Sun P, Liu J, Wang J, Xu B, Jin Z (2018) Overexpression of a novel ROP gene from the banana (MaROP5g) confers increased salt stress tolerance. Int J Mol Sci. https://doi.org/10.3390/ijms19103108

    Article  PubMed  PubMed Central  Google Scholar 

  • Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14:267–274

    Article  CAS  PubMed  Google Scholar 

  • Mishra M, Jalil SU, Mishra RK, Kumari S, Pandey BK (2016) In vitro screening of guava plantlets transformed with endochitinase gene against Fusarium oxysporum f. sp. psidii. Czech J Genet Plant Breed 52:6–13

    Article  CAS  Google Scholar 

  • Nejat N, Mantri N (2018) Emerging roles of long non-coding RNAs in plant response to biotic and abiotic stresses. Crit Rev Biotechnol 38(1):93–105

    Article  CAS  PubMed  Google Scholar 

  • Nell RJ, Steenderen DV, Menger NV, Weitering TJ, Versluis M, derVelden PAV (2019) Quantification of DNA methylation using methylation-sensitive restriction enzymes and multiplex digital PCR. biorxivdoi: https://doi.org/10.1101/816744

  • Nguyen QH, Vu LTK, Nguyen LTN (2019) Overexpression of the GmDREB6 gene enhances proline accumulation and salt tolerance in genetically modified soybean plants. Sci Rep 9:19663. https://doi.org/10.1038/s41598-019-55895-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen QM, Iswanto ABB, Son GH, Kim SH (2021) Recent advances in effector-triggered immunity in plants: new pieces in the puzzle create a different paradigm. Int J Mol Sci 22(9):4709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parajuli R, Thoma G, Matlock MD (2019) Environmental sustainability of fruit and vegetable production supply chains in the face of climate change: a review. Sci Total Environ 650:2863–2879

    Article  CAS  PubMed  Google Scholar 

  • Parashar NC, Parashar G, Nayyar H, Sandhir R (2020a) Differential DNA methylation in regulation of deacetylvindoline-4-Oacetyl transferase (DAT) gene in Catharanthusroseus. J Plant Biochem Biotechnol. https://doi.org/10.1007/s13562-020-00592-7

    Article  Google Scholar 

  • Parashar NC, Parashar G, Nayyar H, Sandhir R (2020b) Differential DNA methylation in regulation of deacetylvindoline-4-Oacetyl transferase (DAT) gene in Catharanthus roseus. J Plant Biochem Biotechnol. https://doi.org/10.1007/s13562-020-00592-7

    Article  Google Scholar 

  • Park P (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paun O, Verhoeven JFK, Richards CL (2019) Opportunities and limitations of reduced representation bisulfite sequencing in plant ecological epigenomics. New Phytol 221:738–742

    Article  CAS  PubMed  Google Scholar 

  • Pedrosa AM, Martins CdPS, Goncalves LP, Costa MGC (2015) Late embryogenesis abundant (LEA) constitutes a large and diverse family of proteins involved in development and abiotic stress responses in sweet orange (Citrus sinensis L. Osb). PLoS ONE 10:e0145785

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng A, Cheng S, Lei T, Xu L, He Y, We L, Yao L, Zou X (2017) Engineering canker-resistant plants through CRISPR/Cas 9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol J 15:1509–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pessina S, Lenzi L, Perazzolli M, Campa M, DallaCosta L, Urso S, Vale G, Salamini F, Velasco R, Malnoy M (2016) Knockdown of MLO genes reduces susceptibility to powdery mildew in grapevine. Hortic Res 3:16016

    Article  PubMed  PubMed Central  Google Scholar 

  • Pirzad A, Shakiba RM, Salmasi Zehtab S, Mohammadi AS, Darvishzadeh R, Samadi A (2011) Effect of water stress on leaf relative water content, chlorophyll, proline and soluble carbohydrates in Matricaria chamomilla L. J Med Plants Res 5(12):2483–2488

    CAS  Google Scholar 

  • Quadrana L, Almeida J, Asis R, Duffy T, Dominguez PG, Bermudez L, Conti G, Correa da Silva JV, Peralta IE, Colot V (2014) Natural occurring epialleles determine vitamin E accumulation in tomato fruits. Nat Commun 5:4027

    Article  Google Scholar 

  • Rehman M, Tanti B (2020) Understanding epigenetic modifications in response to abiotic stresses in plants. Biocatal Agric Biotechnol. https://doi.org/10.1016/j.bcab.2020.101673

    Article  Google Scholar 

  • Richards EJ (2006) Inherited epigenetic variation—revisiting soft inheritance. Nat Rev Genet 7:395–401

    Article  CAS  PubMed  Google Scholar 

  • Rida FA, Muhammad I, Hafiz AS, Khan M, Chen L (2020) Engineering drought tolerance in plants by modification of transcription and signalling factors. Biotechnol Biotechnol Equip 34:781–789. https://doi.org/10.1080/13102818.2020.1805359

    Article  CAS  Google Scholar 

  • Roy B, Noren SK, Mandal AB, Basu AK (2011) Genetic engineering for abiotic stress tolerance in agricultural crops. Biotechnology 10:1–22

    CAS  Google Scholar 

  • Saraswat S, Yadav AK, Sirohi P, Singh NK (2017) Role of epigenetics in crop improvement: water and heat stress. J Plant Biol 60:231–240

    Article  CAS  Google Scholar 

  • Saze H (2008) Epigenetic memory transmission through mitosis and meiosis in plants. Semin Cell Dev Biol 19:527–536

    Article  PubMed  Google Scholar 

  • Sharma S, Sharma A (2018) Molecular markers based plant breeding. Adv Res 16(1):1–15

    Article  Google Scholar 

  • Sharma S, Kaur R, Singh A (2017) Recent advances in CRISPR/Cas mediated genome editing for crop improvement. Plant Biotechnol Rep 11:193–207

    Article  Google Scholar 

  • Sharma S, Dobhal S, Thakur S (2018) Analysis of genetic diversity in parents and hybrids of Populus deltoides Bartr. using microsatellite markers. Appl Biol Res 20(3):262–270

    Article  Google Scholar 

  • Sharma S, Kaur R, Kumar K (2019a) Studies on genetic fidelity of long term micropropagated culture derived plants of Ofra strawberry using molecular markers. Indian J Hortic 76(4):596–603

    Article  Google Scholar 

  • Sharma S, Kaur R, Solanke AKU, Dubey H, Tiwari S, Kumar K (2019) Transcriptome sequencing of Himalayan Raspberry (Rubus ellipticus) and development of simple sequence repeat markers. 3 Biotech. https://doi.org/10.1007/s13205-019-1685-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Dobhal S, Kumar S, Thakur S (2020) Morphological, physiological and molecular analysis of Line × tester in Populus deltoides Bartr. Plant Physiol Rep 25(1):87–106

    Article  CAS  Google Scholar 

  • Sharma S, Chahal A, Prasad H, Walia A, Kumar R, Dobhal S (2021) Identification, phylogeny and transcript profiling of ERF family genes during temperature stress treatment in Pea (Pisum sativum L.). J Plant Biochem Biotechnol. https://doi.org/10.1007/s13562-021-00709-6

    Article  Google Scholar 

  • Sharma S, Kaur R, Kumar K, Kumar D, Solanke AKU (2021b) Genetic diversity in Rubus ellipticus collections assessed by morphological traits and EST-SSR markers. J Plant Biochem Biotechnol 30:37–55

    Article  CAS  Google Scholar 

  • Sharma S, Chauhan A, Dobbal S, Kumar R (2022) Biology of plants coping stresses: epigenetic modifications and genetic engineering. S Afr J Bot 144:270–283

    Article  Google Scholar 

  • Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216

    Article  CAS  PubMed  Google Scholar 

  • Shi H, He X, Zhao Y, Lu S, Guo Z (2020) Constitutive expression of a group 3 LEA protein from Medicagofalcata (MfLEA3) increases cold and drought tolerance in transgenic tobacco. Plant Cell Rep 39(7):851–860

    Article  CAS  PubMed  Google Scholar 

  • Shivakumara TN, Sreevathsa R, Dash PK, Sheshshayee MS, Papolu PK, Rao U, Tuteja N, Udayakumar M (2017) Overexpression of Pea DNA Helicase 45 (PDH45) imparts tolerance to multiple abiotic stresses in chili (Capsicum annuum L.). Sci Rep. https://doi.org/10.1038/s41598-017-02589-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Shuai P, Liang D, Tang S, Zhang Z, Ye CY, Su Y, Xia X, Yin W (2014) Genome-wide identification and functional prediction of novel and droughtresponsive lincRNAs in Populus trichocarpa. J Exp Bot 65:4975–4983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva DB, Marques CJ, Henrique R, JerOnimo C (2018) Profiling DNA methylation based on next-generation sequencing approaches: new insights and clinical applications. Genes 9:429. https://doi.org/10.3390/genes9090429

    Article  CAS  Google Scholar 

  • Singh TJ, Gupta T, Sharma S (2019) Development and purity identification of hybrids by using molecular marker in wild pomegranate (Punica granatumL.). Sci Hortic 247:436–448

    Article  CAS  Google Scholar 

  • Singroha G, Sharma P (2019) Epigenetic modifications in plants under abiotic stress. Epigenetics. https://doi.org/10.5772/intechopen.84455

    Article  Google Scholar 

  • Sivakumar P, Sharma P, Saradhi PP (2000) Proline alleviates salt-stress-induced enhancement in ribulose-1, 5-bisphosphate oxygenase activity. Biochem Biophys Res Commun 279(2):512–515

    Article  CAS  PubMed  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and theepigenetic regulation of the genome. Nat Rev Genet 8:272–285. https://doi.org/10.1038/nrg2072

    Article  CAS  PubMed  Google Scholar 

  • Stoffel M, Gardini E, Ehrenthal JC, Abbruzzese E, Ditzen B (2020) Evaluation of stress management and stress prevention using epigenetic markers. Verhaltenstherapie. https://doi.org/10.1159/000506323

    Article  Google Scholar 

  • Su C, Wang C, He L, Yang C, Wang Y (2014) Shotgun bisulfite sequencing of the betulaplatyphylla genome reveals the tree’s DNA methylation patterning. Int J Mol Sci 15:22874–22886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Rikkerink EH, Jones WT, Uversky VN (2013) Multifarious roles of intrinsic disorder in proteins illustrate its broad impact on plant biology. Plant Cell 25:38–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Zheng H, Sui N (2018) Regulation mechanism of long non-coding RNA in plant response to stress. Biochem Biophys Res Commun 503(2):402–407

    Article  CAS  PubMed  Google Scholar 

  • Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169:931–945

    Article  PubMed  PubMed Central  Google Scholar 

  • Talbert PB, Henikoff S (2014) Environmental responses mediated by histone variants. Trends Cell Biol 24:642–650

    Article  CAS  PubMed  Google Scholar 

  • Terrenoire E, McRonald F, Halsall JA, Page P, Illingworth RS, Taylor AMR, Turner BM (2010) Immunostaining of modified histones defines high-level features of the human metaphase epigenome. Genome Biol 11(11):1–14

    Article  Google Scholar 

  • Teyssier E, Bernacchia G, Maury S, How Kit A, Stammitti-Bert L, Rolin D, Gallusci P (2008) Tissue dependent variations of DNA methylation and endoreduplication levels during tomato fruit development and ripening. Planta 228:391–399

    Article  CAS  PubMed  Google Scholar 

  • Thapa G, Dey M, Sahoo L (2011) An insight into the drought stress induced alterations in plants. BiolPlant 55(4):603–613

    CAS  Google Scholar 

  • Thapa B, Shrestha A (2020) Epigenetic mechanisms and its role in plant growth and development. J Plant Biochem Physiol 8:1–10

    Google Scholar 

  • Thiebaut F, Hemerly AS, Ferreira PCG (2020) A role for epigenetic regulation in the adaptation and stress responses of non-model plants. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.00246

  • Tian S, Jiang L, Cui X, Zhang J, Guo S, Li M, Zhang H, Ren Y, Gong G, Zong M, Liu F, Chen Q, Xu Y (2018) Engineering herbicide-resistance watermelon variety through CRISPR/Cas9-mediated genome editing. Plant Cell Rep 37:1353–1356

    Article  CAS  PubMed  Google Scholar 

  • Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94:791–812

    Article  CAS  PubMed  Google Scholar 

  • Uthup TK, Ravindran M, Bini K, Thakurdas S (2011) Divergent DNA methylation patterns associated with abiotic stress in Hevea brasiliensis. Mol Plant 4(6):996–1013

    Article  CAS  PubMed  Google Scholar 

  • Vats S, Kumawat S, Kumar V, Patil GB, Joshi T, Sonah H, Sharma TR, Deshmukh R (2019) Genome editing in plants: exploration of technological advancements and challenges. Cells 8:1386. https://doi.org/10.3390/cells8111386

    Article  CAS  PubMed Central  Google Scholar 

  • Verdier J, Lalanne D, Pelletier S, Torres-Jerez I, Righetti K, Bandyopadhyay K, Leprince O, Chatelain E, Vu BL, Gouzy J (2013) A regulatory network-based approach dissects late maturation processes re-lated to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds. Plant Physiol 163:757–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira P, Wantoch S, Lilley JL, Chitwood DJ, Atkinson HJ, Kamo K (2015) Expression of a cystatin transgene can confer resistance to root lesion nematodes in Lilium longiflorum cv. ‘Nellie White.’ Transgenic Res 24:421–432

    Article  CAS  PubMed  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • Wada N, Ueta R, Osakabe Y, Osakabe K (2020) Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering. BMC Plant Biol 20:1–12

    Article  Google Scholar 

  • Waddington CH (1942) The epigenotype. Endeavour 1:18–20

    Google Scholar 

  • Wang X, Kohalmi SE, Svircev A, Wang A, Sanfacon H, Tian L (2013) Silencing of the host factor eIF(iso)4E gene confers plum pox virus resistance in plum. PLoS ONE 8:1–12

    Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32(9):947–951

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Ai G, Zhang C, Cui L, Wang J, Li H, Zhang J, Ye Z (2016a) Expression and diversification analysis reveals transposable elements play important roles in the origin of Lycopersicon-specific lncRNAs in tomato. New Phytol 209:1442–1455

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Liu X, Ren C, Zhong GY, Yang L, Li S, Liang Z (2016b) Identification of genomic sites for CRISPR/ Cas9-based genome editing in the Vitis vinifera genome. BMC Plant Biol 16:1–7

    Article  Google Scholar 

  • Wang M, Zou Z, Li Q, Sun K, Chen X, Li X (2017) The CsHSP17.2 molecular chaperone is essential for thermotolerance in Camellia sinensis. Sci Rep 7(1):1–15. https://doi.org/10.1038/s41598-017-01407-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Li Z, Ran Q, Li P, Peng Z, Zhang J (2018a) ZmNF-YB16 overexpression improves drought resistance and yield by enhancing photosynthesis and the antioxidant capacity of maize plants. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00709

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Liu C, Dong Q, Huang D, Li C, Li P, Ma F (2018) Genome-wide identification and analysis of apple NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) genes reveals MdNPF6.5 confers high capacity for nitrogen uptake under low-nitrogen conditions. Int J Mol Sci. https://doi.org/10.3390/ijms19092761

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Gao T, Chen J, Yang J, Huang H, Yu Y (2019) The late embryogenesis abundant gene family in tea plant (Camellia sinensis): genome-wide characterization and expression analysis in response to cold and dehydration stress. Plant Physiol Biochem 135:277–286

    Article  CAS  PubMed  Google Scholar 

  • Wise MJ, Tunnacliffe A (2004) POPP the question: what do LEA proteins do? Trends Plant Sci 9:13–17

    Article  CAS  PubMed  Google Scholar 

  • Xiao J, Lee US, Wagner D (2016) Tug of war: adding and removing histone lysine methylation in Arabidopsis. Curr Opin Plant Biol 34:41–53

    Article  CAS  PubMed  Google Scholar 

  • Xin M, Wang Y, Yao Y, Song N, Hu Z, Qin D, Xie C, Peng H, Ni Z, Sun Q (2011) Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biol 11:61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Ge Y, Zhang W, Zhao Y, Yang G (2018) The walnut JrVHAG1 gene is involved in cadmium stress response through ABA-signal pathway and MYB transcription regulation. BMC Plant Biol. https://doi.org/10.1186/s12870-018-1231-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu M, Tong Q, Wang Y, Wang Z, Xu G, Elias GK, Li S, Liang Z (2020) Transcriptomic analysis of the grapevine LEA gene family in response to osmotic and cold stress reveals a key role for VamDHN3. Plant Cell Physiol 61:775–786

    Article  CAS  PubMed  Google Scholar 

  • Yaish MW, Peng M, Rothstein SJ (2009) AtMBD9 modulates Arabidopsis development through the dual epigenetic pathways of DNA methylation and histone acetylation. Plant J 59:123–135. https://doi.org/10.1111/j.1365-313X.2009.03860.x

    Article  CAS  PubMed  Google Scholar 

  • Yaish MW, Peng M, Rothstein SJ (2014) Global DNA methylation analysis using methyl-sensitive amplification polymorphism (MSAP). Methods Mol Biol 1062:285–298

    Article  PubMed  Google Scholar 

  • You J, Xiong L (2015) Genetic improvement of drought resistance in rice. In: Jaiwal PK, Singh RP, Dhankher OP (eds) Genetic manipulation in plants for mitigation of climate change. Springer, Berlin, pp 73–102

    Chapter  Google Scholar 

  • Yu X, Yang J, Li X, Liu X, Sun C, Wu F, He Y (2013) Global analysis of cisnatural antisense transcripts and their heat-responsive nat-siRNAs in Brassica rapa. BMC Plant Biol 13:208

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan J, Li J, Yang Y, Tan C, Zhu Y, Hu L, Lu ZJ (2018) Stress-responsive regulation of long non-coding RNA polyadenylation in Oryza sativa. Plant J 93(5):814–827

    Article  CAS  PubMed  Google Scholar 

  • Zang X, Geng X, Wang F, Liu Z, Zhang L, Zhao Y, Tian X, Ni Z, Yao Y, Xin M, Hu Z, Sun Q, Peng H (2017) Overexpression of wheat ferritin gene TaFER-5Benhances tolerance to heat stress and other abiotic stresses associated with the ROS scavenging. BMC Plant Biol 17:1–13

    Article  Google Scholar 

  • Zhang J, Klueva NY, Wang Z (2000) Genetic engineering for abiotic stress resistance in crop plants. In Vitro Cell Dev Biol Plant 36:108–114

    Article  CAS  Google Scholar 

  • Zhang YC, Liao JY, Li ZY, Yu Y, Zhang JP, Li QF, Qu LH, Shu WS, Chen YQ (2014) Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biol 15:512

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang HY, Liu HM, Liu XZ (2015a) Production of transgenic kiwifruit plants harboring the SbtCry1Ac gene. Genet Mol Res 14:8483–8489

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Garcia N, Feng Y, Zhao H, Messing J (2015b) Genome-wide histone acetylation correlates with active transcription in maize. Genomics 106(4):214–220

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhou P, Bozorov TA, Zhang D (2021) Application of CRISPR/Cas9 technology in wild apple (Malus sieverii) for paired sites gene editing. Plant Methods 17:79. https://doi.org/10.1186/s13007-021-00769-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao R, Song X, Yang N, Chen L, Xiang L, Liu XQ, Zhao K (2020) Expression of the subgroup IIIf bHLH transcription factor CpbHLH1 from Chimonanthus praecox (L.) in transgenic model plants inhibits anthocyanin accumulation. Plant Cell Rep 39:891–907. https://doi.org/10.1007/s00299-020-02537-9

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Meng X, Cai J, Li G, Dong T, Li Z (2018) Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato. BMC Plant Biol. https://doi.org/10.1186/s12870-018-1299-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Zong W, Zhong X, You J, Xiong L (2013) Genome-wide profiling of histone H3K4-tri-methylation and gene expression in rice under drought stress. Plant Mol Biol 81(1):175–188

    Article  CAS  PubMed  Google Scholar 

  • Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y, Qiu JL, Wang D, Gao C (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol. https://doi.org/10.1038/nbt.3811

    Article  PubMed  Google Scholar 

  • Zou C, Wang Q, Lu C, Yang W, Zhang Y, Cheng H, Feng X, Prosper MA, Song G (2016) Transcriptome analysis reveals long noncoding RNAs involved in fiber development in cotton (Gossypium arboreum). Sci China Life Sci 59:164–171

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samriti Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Chauhan, A., Kumar, R. et al. Horticultural crops tackling stresses: genetic and epigenetic alterations. Genet Resour Crop Evol 69, 11–38 (2022). https://doi.org/10.1007/s10722-021-01298-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-021-01298-y

Keywords

Navigation