Skip to main content

Advertisement

Log in

Evaluation of wheat (Triticum aestivum L.) salt stress tolerance using physiological parameters and retrotransposon-based markers

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

About 6% of the total land area in the world and 20% of the irrigated land is suffering from salt stress. Egypt is one of the countries that suffer from salt stress problems. The aim of this study was to determine salt stress tolerance of six wheat (Triticum aestivum L.) genotypes. These genotypes can be grown all over the world, found in gene banks and have pedigree. These genotypes were grown in pots under greenhouse conditions and subjected to two salt levels (tap water or control and 200 mM). Some morphological and physiological traits were determined. The results revealed that there were significant variations with all morphological and physiological traits as influenced by salt stress and genotypes. All studied morphological traits (shoot and root length and yield attributes) were decreased under salt stress conditions except Sids 13 and Sakha 94 genotypes which showed non-significant effect compared with unstressed plants. Total phenol, total flavonoid and antioxidant activity were significantly increased in shoots of all wheat genotypes under salt stress. Wheat genotypes responded differently to mineral contents under salt stress. The SDS-PAGE of seed proteins gave high level of genetic variability with polymorphism percentage of 65.38%. Furthermore, they revealed some important biochemical markers for salt stress tolerance. The six wheat genotypes were fingerprinted with eight primers using inter-primer binding sites and inter-retrotransposon amplified polymorphism techniques. In conclusion, the techniques marked each genotype successfully with different unique bands and detected molecular genetic markers correlated with salt tolerance in wheat crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abd El-Rahman SS,  Mazen MM, Mohamed HI, Mahmoud NM (2012) Induction of defence related enzymes and phenolic compounds in lupin (Lupinus albus L.) and their effects on host resistance against Fusarium wilt. European J Plant Pathol 134(1):105–116

    Article  CAS  Google Scholar 

  • Abou-Deif MH, Khattab SAM, Afiah SAN (2005) Effect of salinity on genetic parameters and protein electrophoresis patterns in some wheat crosses. J Genet Eng Biotechnol 3(1):115–130

    Google Scholar 

  • Afiah SA, Hassan WA, Rashed NAK (2016) Selecting salt tolerant wheat genotypes under Ras–Suder and middle-delta conditions. Egypt J Plant Breed 20(6):929–952

    Article  Google Scholar 

  • Akladious SA, Mohamed HI (2018) Ameliorative effects of calcium nitrate and humic acid on the growth, yield component and biochemical attribute of pepper (Capsicum annuum) plants grown under salt stress. Sci Horticult 236:244–250

    Article  CAS  Google Scholar 

  • Aly AA, Mansour MTM, Mohamed HI, Abd-Elsalam KA (2012) Examination of correlations between several biochemical components and powdery mildew resistance of flax cultivars. Plant Pathol J 28(2):149–155

    Article  CAS  Google Scholar 

  • Alzohairy AM, Gyulai G, Ramadan MF, Edris S, Sabir JSM, Jansen RK, Eissa HF, Bahieldin A (2014a) Retrotransposon-based molecular markers for assessment of genomic diversity. Funct Plant Biol 41(8):781–789

    Article  CAS  PubMed  Google Scholar 

  • Alzohairy AM, Sabir JS, Gyulai G, Younis RA, Jansen RK, Bahieldin A (2014b) Environmental stress activation of plant long-terminal repeat retrotransposons. Funct Plant Biol 41(6):557–567

    Article  CAS  PubMed  Google Scholar 

  • Ashry NA, Ghonaim MM, Mohamed HI, Mogazy AM (2018) Physiological and molecular genetic studies on two elicitors for improving the tolerance of six Egyptian soybean cultivars to cotton leaf worm. Plant Physiol Biochem 130:224–234

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269

    Article  CAS  PubMed  Google Scholar 

  • Bettaieb I, Hamrouni-Sellami I, Bourgou S, Limam F, Marzouk B (2011) Drought effects on polyphenol composition and antioxidant activities in aerial parts of Salvia officinalis L. Acta Physiol Plant 33:1103–1111

    Article  CAS  Google Scholar 

  • Bouslama M, Schapaugh WT (1984) Stress tolerance in soybean. Part 1: evaluation of three screening techniques for heat and drought tolerance. Crop Sci 24:933–937

    Article  Google Scholar 

  • Bushra S, Farooq A, Muhammad A (2009) Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules 14:2167–2180

    Article  CAS  Google Scholar 

  • Carvalho A, Guedes-Pinto H, Martins-Lopes P, Lima-Brito J (2010) Genetic variability of old Portuguese wheat cultivars assayed by IRAP and REMAP markers. Ann Appl Biol 156:337–345

    Article  CAS  Google Scholar 

  • Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20

    Article  CAS  PubMed  Google Scholar 

  • Cramer MD, Schierholt A, Wang VZ, Lips SH (1995) The influence of salinity on the utilization of root anaplerotic carbon and nitrogen metabolism in tomato seedlings. J Exp Bot 46:1569–1577

    Article  CAS  Google Scholar 

  • Di Ferdinando M, Brunetti C, Fini A, Tattini M (2012) Flavonoids as antioxidants in plants under abiotic stresses. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New York, pp 159–179

    Chapter  Google Scholar 

  • Dihazi A, Jaiti F, Zouine J, Hasni ME, Hadrami IE (2003) Effect of salicylic acid on phenolic compounds related to date palm resistance to Fusarium oxysporum. Phytopathol Mediterr 42:9–16

    CAS  Google Scholar 

  • Duncan BD (1955) Multiple ranges and multiple F. test. Biometrics II:1–42

    Article  Google Scholar 

  • El-Beltagi HS, Mohamed HI (2013) Reactive oxygen species, lipid peroxidation and antioxidative defense mechanism. Not Bot Horticult Agrobot 41:44–57

    Article  CAS  Google Scholar 

  • El-Beltagi HS, Mohamed HI, Mohammed AHMA, Zaki LM, Mogazy AM (2013) Physiological and biochemical effects of γ-irradiation on cowpea plants (Vigna sinensis) under salt stress. Not Bot Horti Agrobot 41(1):104–114

    Article  CAS  Google Scholar 

  • El-Beltagi HS, Mohamed HI, Sofy MR (2020) Role of ascorbic acid, glutathione and proline applied as singly or in sequence combination in improving chickpea plant through physiological change and antioxidant defense under different levels of irrigation intervals. Molecules 25:1702

    Article  CAS  PubMed Central  Google Scholar 

  • El-Hendawy SE, Hu Y, Yakout GM, Awad AM, Haifz SE, Schmidhalter U (2005) Evaluating salt tolerance of wheat genotypes using multiple parameters. Euro Agron 22:243–253

    Article  CAS  Google Scholar 

  • El-Mashad AAA, Mohamed HI (2012) Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis). Protoplasma 249:625–635

    Article  CAS  PubMed  Google Scholar 

  • FAO (2015) World wheat, corn and rice. Oklahoma State University, FAO Statistics, Oklahoma

    Google Scholar 

  • Fernandez GCJ (1992) Effective selection criteria for assessing plant stress tolerance. Proc Symp Taiwan 25:257–270

    Google Scholar 

  • Fischer RA, Maurer R (1978) Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust J Agric Res 29:897–912

    Article  Google Scholar 

  • Flavell AJ, Bolshakov VN, Booth A, Jing R, Russell J, Ellis TH, Isaac P (2003) A microarray-based high throughput molecular marker genotyping method: the tagged microarray marker (TAM) approach. Nucleic Acids Res 31:e115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flowers TJ, Hajibagheri MA (2001) Salinity tolerance in Hordeum vulgare: ion concentrations in roots cells of cultivars differing in salt tolerance. Plant Soil 231:1–9

    Article  CAS  Google Scholar 

  • Gadallah MA, Milad SI, Amira MYM, Yossef Abo, Gouda MA (2017) Evaluation of some egyptian wheat (Triticum aestivum) cultivars under salinity stress. Alex Sci Exch J 38(2):259–270

    Google Scholar 

  • Gavuzzi P, Rizza F, Palumbo M, Campaline RG, Ricciardi GL, Borghi B (1997) Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Can J Plant Sci 77:523–531

    Article  Google Scholar 

  • Goudarzi M, Pakniyat H (2008) Evaluation of wheat cultivars under salinity stress based on some agronomic and physiological traits. J Agric Soc Sci 4(3):35–38

    Google Scholar 

  • Hamam KA, Negim O (2014) Evaluation of wheat genotypes and some soil properties under saline water irrigation. Ann Agric Sci 59(2):165–176

    Article  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts 1. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hossain ABS, Sears AG, Cox TS, Paulsen GM (1990) Desiccation tolerance and its relationship to assimilate partitioning in winter wheat. Crop Sci 30:622–627

    Article  Google Scholar 

  • Kalendar R, Schulman AH (2006) IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nat Protoc 1:2478–2484

    Article  CAS  PubMed  Google Scholar 

  • Katz SA, Jenniss SW (1983) Regulatory Compliance Monitoring by Atomic Absorption Spectroscopy. Verlag Chemie International INC., Deerfield Beach, Florida

    Google Scholar 

  • Khalil RM (2013) Molecular and biochemical markers associated with salt tolerance in some sorghum genotypes. World Appl Sci J 22(4):459–469

    CAS  Google Scholar 

  • Khan MH, Panda SK (2008) Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiol Plant 30:81–89

    Article  CAS  Google Scholar 

  • Kumari N, Malik K, Rani B, Jattan M, Avtar R, Devi S, Arya SS (2019) Insights in the Physiological, Biochemical and Molecular Basis of Salt Stress Tolerance in Plants. In: Giri B, Varma A (eds) Microorganisms in Saline Environments: Strategies and Functions, Soil Biology, vol 56. Springer, Switzerland, pp 353–374

    Chapter  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–686

    Article  CAS  PubMed  Google Scholar 

  • Lata C, Kumar A, Sharma SK, Singh J, Sheokand S, Mann A, Rani B (2017) Tolerance to combined boron and salt stress in wheat varieties: biochemical and molecular analyses. Indian J Exp Biol 55:321–328

    CAS  Google Scholar 

  • Latif HH, Mohamed HI (2016) Exogenous applications of moringa leaf extract effect on retrotransposon, ultrastructural and biochemical contents of common bean plants under environmental stresses. South Afr J Bot 106:221–231

    Article  CAS  Google Scholar 

  • Manninen O, Jalli M, Kalendar R, Afanasenko O, Robinson J (2006) Mapping of major spot type and net type net blotch resistance genes in the Ethiopian barley line CI 9819. Genome 49:1564–1571

    Article  CAS  PubMed  Google Scholar 

  • Menezes CB, Ticona-Benavente CA, Tardin FD, Cardoso MJ, Bastos EA, Nogueira DW, Portugal AF, Santos CV, Schaffert RE (2014) Selection indices to identify drought-tolerant grain sorghum cultivars. Gene Mol Res 13:9817–9827

    Article  CAS  Google Scholar 

  • Milad SI, El-Banna MN, El-Sheikh MH, Ebaid ME (2013) Effect of genotypes and medium protocols on callus formation and plant regeneration from mature embryos of Egyptian wheat (Triticum aestivum L.) varieties. J Adv Agric Res 18(4):874–889

    Google Scholar 

  • Mohamed HI, Gomaa EZ (2012) Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescens on growth and pigment composition of radish plants (Raphanus sativus) under NaCl stress. Photosynthetica 50(2):263–272

    Article  CAS  Google Scholar 

  • Mohamed HI, Latif HH (2017) Improvement of drought tolerance of soybean plants by using methyl jasmonate. Physiol Mol Biol Plants 23:545–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamed HI, Akladious SA, Ashry NA (2018a) Evaluation of water stress tolerance of soybean using physiological parameters and retrotransposon-based markers. Gesunde Pflanzen 70:205–215

    Article  CAS  Google Scholar 

  • Mohamed HI, Akladious SA, El-Beltagi HS (2018b) Mitigation the harmful effect of salt stress on physiological, biochemical and anatomical traits by foliar spray with trehalose on wheat cultivars. Fresenius Environ Bull 27:7054–7065

    CAS  Google Scholar 

  • Navarro JM, Flores P, Garrido C, Martinez V (2006) Changes in the contents of antioxidant compounds in pepper fruits at ripening stages, as affected by salinity. Food Chem 96:66–73

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Nybom H, Weising K, Rotter B (2014) DNA fingerprinting in botany: past, present, future. Investig Genet 5(1):1–35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Obiadalla-Ali HA, Mohamed NEM, Glala AA, Eldekashy MHZ (2013) Heterosis and nature of gene action for yield and its components in faba bean (Vicia faba L.). J Plant Breed Crop Sci 5(3):34–40

    Article  Google Scholar 

  • Oliver KR, Greene WK (2009) Transposable elements: powerful facilitators of evolution genes and genomes. BioEssays 31:703–714

    Article  CAS  PubMed  Google Scholar 

  • Pearce SR, Harrison G, Li D, Heslop-Harrison JS, Kumar A, Flavell AJ (1996) The Ty1- copia group retrotransposons in Vicia species: copy number, sequence heterogeneity and chromosomal localisation. Mol Gen Gene 250:305–315

    CAS  Google Scholar 

  • Peng JH, Sun D, Nevo E (2011) Domestication evolution, genetics and genomics in wheat. Mol Breeding 28:281–301

    Article  CAS  Google Scholar 

  • Potapovich AI, Kostyuk VA (2003) Comparative study of antioxidant properties and cytoprotective activity of flavonoids. Biochemistry 68:514–519

    CAS  PubMed  Google Scholar 

  • Raza A, Mehmood SS, Shah T, Zou X, Yan L, Zhang X, Khan RSA (2019) Applications of molecular markers to develop resistance against abiotic stresses in wheat. In: Wheat production in changing environments. Springer, Singapore Project: Deciphering abiotic stress responses and tolerance mechanisms in plants; and mitigation strategies to combat abiotic stresses. pp 393–420

  • Rohlf FJ (2008) NTSYS. Pc., Version 2.20U. Exeter Software, Setauket, New York

  • Sahin O, Karlik E, Meric S, Ari S, Gozukirmizi N (2020) Genome organization changes in GM and non-GM soybean [Glycine max (L.) Merr.] under salinity stress by retro-transposition events. Genet Resour Crop Evol. https://doi.org/10.1007/s10722-020-00928-1

    Article  Google Scholar 

  • Sharma D, Saharan V, Joshi A, Jain D (2015) Biochemical Characterization of Wheat (Triticum aestivum L.) Genotypes Based on SDS-PAGE. Triticeae Genom Genet 6(2):1–7. https://doi.org/10.5376/tgg.2015.06.0002

    Article  CAS  Google Scholar 

  • Sofy MR, Elhawat N, Alshaal T (2020) Glycine betaine counters salinity stress by maintaining high K+/Na+ ratio and antioxidant defense via limiting Na+ uptake in common bean (Phaseolus vulgaris L.). Ecotoxicol Environ Saf 200:110732

    Article  CAS  PubMed  Google Scholar 

  • Studier FW (1973) Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J Mol Biol 79:237–248

    Article  CAS  PubMed  Google Scholar 

  • Suvorova G, Kornienko N (2011) Genetic relationships among wild Lens Mill. species revealed by SDS-PAGE. Ratar Povrt Field Veg Crop Res 48:31–36

    Google Scholar 

  • Tracey AC, Betts SA, Chalmandrier R, Shabala S (2008) A root’s ability to retain K + correlates with salt tolerance in wheat. J Exp Bot 59(10):2697–2706

    Article  CAS  Google Scholar 

  • Turkmen N, Sari F, Velioglu YS (2005) The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. J Food Chem 93:713–718

    Article  CAS  Google Scholar 

  • Vuorinen A, Kalendar R, Fahima T, Korpelainen H, Nevo E, Schulman A (2018) Retrotransposon-based genetic diversity assessment in wild emmer wheat (Triticum turgidum ssp. dicoccoides). Agronomy 8(107):1–13

    Google Scholar 

  • Wang L, Guan R, Zhangxiong L, Chang R, Qiu L (2006) Genetic diversity of Chinese cultivated soybean revealed by SSR markers. Crop Sci 46:1032–1038

    Article  Google Scholar 

  • Žiarovská J, RažnáSenková KS, Štefúnová V, Bežo M (2012) Variability of Linum usitatissimum L. based on molecular markers. ARPN J Agri Biol Sci 7(1):50–58

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heba I. Mohamed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghonaim, M.M., Mohamed, H.I. & Omran, A.A.A. Evaluation of wheat (Triticum aestivum L.) salt stress tolerance using physiological parameters and retrotransposon-based markers. Genet Resour Crop Evol 68, 227–242 (2021). https://doi.org/10.1007/s10722-020-00981-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-020-00981-w

Keywords

Navigation