Skip to main content
Log in

Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescens on growth and pigment composition of radish plants (Raphanus sativus) under NaCl stress

  • Published:
Photosynthetica

Abstract

Soil salinity is one of the most severe factors limiting growth and physiological response in Raphanus sativus. In this study, the possible role of plant growth promoting bacteria (PGPB) in alleviating soil salinity stress during plant growth under greenhouse conditions was investigated. Increasing salinity in the soil decreased plant growth, photosynthetic pigments content, phytohormones contents (indole-3-acetic acid, IAA and gibberellic acid, GA3) and mineral uptake compared to soil without salinity. Seeds inoculated with Bacillus subtilis and Pseudomonas fluorescens caused significantly increase in fresh and dry masses of roots and leaves, photosynthetic pigments, proline, total free amino acids and crude protein contents compared to noninoculated ones under salinity. The bacteria also increased phytohormones contents (IAA and GA3) and the contents of N, P, K+, Ca2+, and Mg2+ but decreased ABA contents and Na+ and Cl content which may contribute in part to activation of processes involved in the alleviation of the effect of salt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

ACC:

1-aminocyclopropane-1-carboxylate

Car:

carotenoid

CAS:

chrom azurol S

Chl:

chlorophyll

DM:

dry mass

FM:

fresh mass

GA3 :

gibberellic acid

GC:

gas chromatography

HCN:

hydrogen cyanide

IAA:

indole-3-acetic acid

LSD:

least significant difference

PGPB:

plant growth promoting bacteria

PVK:

Pikovskaya

RT:

retention time

SD:

standard deviation

References

  • A.O.A.C.: Association of Official Agricultural Chemists. — In: Hortwitz, W., Latimer, G.W. (ed.): Official Methods of Analysis. 18th. Gaithersburg 2005.

  • A.O.A.C.: Association of Official Agricultural Chemists. — Official Methods of Analysis 16th Ed. Washington 1995.

  • Ammar, M.S., Louboudy, S.S., Abdul-Raouf, U.M.: Distribution, total viable bacteria and identification of the most potent proteolytic bacteria strains isolated from Aswan City. — Al-Azhar J. Microbiol. 11: 224–238, 1991.

    Google Scholar 

  • Ashraf, M., Berge, S.H., Mahmood, O.T.: Inoculating wheat seedling with exopolysaccharide producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. — Biol. Fertil. Soils 40: 157–162, 2004.

    CAS  Google Scholar 

  • Bacilio, M., Rodríguez, H., Moreno, M., Hernández, J.P., Bashan, Y.: Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum. — Biol. Fertil. Soils 40: 188–193, 2004.

    Article  CAS  Google Scholar 

  • Bano, A., Fatima, M.: Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. — Biol. Fertil. Soils 45: 405–413, 2009.

    Article  Google Scholar 

  • Barrow, G.I., Feltham, R.K.: Cowan & Steel’s: Manual for the Identification of Medical Bacteria. — Cambridge Univ. Press. Cambridge 1993.

    Book  Google Scholar 

  • Bates, L.S., Waldren, R.P., Teare, L.D.: Determination of proline for water-stress studies. — Plant Soil 39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Bozcuk, S.: Water and salt relations of statics species with particular reference to the problem of halophytes. — Ph.D. Thesis Univ Sussex, Sussex 1970.

    Google Scholar 

  • Brick, J.M., Bostock, R.M., Silverstone, S.E.: Rapid in situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane. — Appl. Environ. Microbiol. 57: 535–538, 1991.

    Google Scholar 

  • Cappuccino, J.C., Sherman, N.: Negative staining. — In: Cappuccino, J.C., Sherman, N. (ed.): Microbiology: A Laboratory Manual. 3rd Ed. Pp. 125–179. Cumming Publ., New York — Benjamin 1992.

    Google Scholar 

  • Cattelan, M.E., Hartel, P.G., Fuhrmann, J.J.: Screening of plant growth-promoting rhizobacteria to promote early soybean growth. — Soil Sci. Soc. Amer. 63: 1670–1680, 1999.

    Article  CAS  Google Scholar 

  • Chen, Z., Cuin, A., Zhou, M., Twomey, A., Naidu, B.P., Shabala, S.: Compatible solute accumulation and stressmitigating effects in barley genotypes contrasting in their salt tolerance. — J. Exp. Bot. 58: 4245–4255, 2007.

    Article  PubMed  CAS  Google Scholar 

  • das Neves, J.P.C., Ferreira, L.F.P., Vaz, M.M., Gazarini, L.C.: Gas exchange in the salt marsh species Atriplex portulacoides L. and Limoniastrum monopetalum L. in Southern Portugal. — Acta Physiol. Plant. 30: 91–97, 2008.

    Article  Google Scholar 

  • Fidalgo, F., Santos, A., Santos, I., Salema, R.: Effects of long term salt stress on antioxidant defense systems, leaf water relations and chloroplast ultrastructure of potato plants. — Assoc. Appl. Biol. 145: 185–192, 2004.

    Article  CAS  Google Scholar 

  • Gagnon, M., Hunting, W.M., Esselen, W.B.: New method for catalase determination. — Anal. Chem. 31: 144–150, 1959.

    Article  CAS  Google Scholar 

  • Geddie, J.L., Sutherland, I.W.: Uptake of materials by bacterial polysaccharides. — J. Appl.Bacteriol. 74: 467–472, 1993.

    Article  CAS  Google Scholar 

  • Glick, B.R.: The enhancement of plant growth by free-living bacteria. — Can. J. Microbiol. 41: 109–117, 1995.

    Article  CAS  Google Scholar 

  • Glick, B.R., Bashan, Y.: Genetic manipulation of plant growth promoting bacteria to enhance biocontrol of fungal phytopathogens. — Biotechnol. Adv. 15: 353–378, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Grichko, V.P, Glick, B.R.: Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. — Plant Physiol. Biochem. 39: 11–17, 2001.

    Article  CAS  Google Scholar 

  • Hajlaoui, H., Denden, M., Bouslama, M.: [Effet du chlorure de sodium sur les critères morpho-physiologiques et productifs du pois chiche (Cicer arietinum L.).] — Ann. INRGREF 8: 171–187, 2006. [In French.]

    Google Scholar 

  • Han, H.S., Lee, K.D.: Physiological responses of soybeaninoculation of Bradyrhizobium japonicum with PGPR in saline soil conditions. — Res. J. Agri. Biol. Sci. 1: 216–221, 2005.

    Google Scholar 

  • Harman, G.E., Björkman, T.: Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. — In: Harman, G.E., Kubicek, C.P. (ed.): Trichoderma and Gliocladium. Pp. 229–265. Taylor & Francis, London 1998.

    Google Scholar 

  • Honma, M., Shimomura, T.: Metabolism of 1-aminocyclopropane-1-Carboxylic acid. — Agri. Biol. Chem. 42: 1825–1831, 1978.

    Article  CAS  Google Scholar 

  • Indrayan, A.K., Sudeep, S., Deepak, D., Kumar, N., Kumar, M.: Determination of nutritive value and analysis of mineral elements for some medicinally valued plants. — Current Sci. 89: 1252–1254, 2005.

    CAS  Google Scholar 

  • Jaleel, C.A., Gopi, R., Gomathinayagam, M., Vam, R.P.: Effects of calcium chloride on metabolism of salt-stressed Dioscorea rotundata. — Acta Biol. Cracoviensia Ser. Bot. 50: 63–67, 2008.

    Google Scholar 

  • Joseph, B., Ranjan Patra, R., Lawrence, R.: Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). — Int. J. Plant Prod. 1: 141–152, 2007.

    Google Scholar 

  • King, E.O., Ward, M.K., Randey, D.E.: Two simple media for the demonstration of pyocyanin and fluorescein. — J. Lab. Clinical Med. 44: 301–307, 1954.

    CAS  Google Scholar 

  • Kohler, J., Hernandez, J.A., Caravaca, F., Roldan, A.: Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. — Environ. Exp. Bot. 65: 245–252, 2009.

    Article  CAS  Google Scholar 

  • Koyro, H.W.: Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). — Environ. Exp. Bot. 56: 136–146, 2006.

    Article  CAS  Google Scholar 

  • Lee, G., Carrow, R.N., Duncan, R.R., Eiteman, M.A., Rieger, M.W.: Synthesis of organic osmolytes and salt tolerance mechanisms in Paspalum vaginatum. — Environ. Exp. Bot. 63: 19–27, 2008.

    Article  CAS  Google Scholar 

  • Lorck, H.: Production of hydrocyanic acid by bacteria. — Plant Physiol. 1: 142–146, 1948.

    Article  CAS  Google Scholar 

  • Mahajan, S., Tuteja, N.: Cold, salinity and drought stresses: an overview. — Arch. Biochem. Bioph. 444: 139–158, 2005.

    Article  CAS  Google Scholar 

  • Mayak, S., Tirosh, T., Glick, B.R.: Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and pepper. — Plant Sci. 166: 525–530, 2004a.

    Article  CAS  Google Scholar 

  • Mayak, S., Tirosh, T., Glick, B.R.: Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. — Plant Physiol. Biochem. 42: 565–572, 2004b.

    Article  PubMed  CAS  Google Scholar 

  • Moore, S., Stein, W.H.: A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. — J. Biol. Chem. 211: 907–913, 1954.

    PubMed  CAS  Google Scholar 

  • Munns, R., James, R.A., Läuchli, A.: Approaches to increasing the salt tolerance of wheat and other cereals. — J. Exp. Bot. 57: 1025–1043, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Nautiyal, C.S.: An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. — FEMS Microbiol. Lett. 170: 265–270, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Neel, J.P., Alloush, G., Belesky, A.D., Clapham, W.M.: Influence of rhizosphere ionic strength on mineral composition, dry matter yield and nutritive value of forage chicory. — J. Agron. Crop Sci. 188: 398–407, 2002.

    Article  CAS  Google Scholar 

  • Parida, A.K., Das, A.B.: Salt tolerance and salinity effects on plants: a review. — Ecotoxicol. Environ. Safety 60: 324–349, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Patten, C.L., Glick, B.R.: Role of Pseudomonas putida indole acetic acid in development of the host plant root system. — Appl. Environ. Microbiol. 68: 3795–3801, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Perrig, D., Boiero, M.L., Masciarelli, O., Penna, C., Ruiz, O.A., Cassan, F., Luna, V.: Plant growth promoting compounds produced by two strains of Azospirillum brasilense, and implications for inoculant formation. — Appl. Microbiol. Biotechnol. 75: 1143–1150, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Puente, M.E., Bashan, Y., Li, C.Y., Lebsky, V.K.: Microbial populations and activities in the rhizoplane of rockweathering desert plants. Root colonization and weathering of igneous rocks. — Plant Biol. 6: 629–642, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, N.W., Lu, Q.T., Lu, C.M.: Photosynthesis, photosystem II efficiency and the xanthophyll cycle in the salt-adapted halophyte Atriplex centralasiatica. — New Phytol. 159: 479–486, 2003.

    Article  CAS  Google Scholar 

  • Rabie, G.H., Almadini, A.M.: Role of bioinoculants in development of salt tolerance of Vicia faba plants under salinity stress. — Afr. J. Biotechnol. 4: 210–222, 2005.

    CAS  Google Scholar 

  • Saravanakumar, D., Samiyappan, R.: ACC deaminase from Pseudomonas Xuorescens mediated saline resistance in groundnut (Arachis hypogea) plants. — J. Appl. Microbiol. 102: 1283–1292, 2007.

    Article  PubMed  CAS  Google Scholar 

  • SAS-Programme: SAS users, Guide Statistics SAS Institute. — SAS Inst., Raleigh 1982.

    Google Scholar 

  • Schwyn, B., Neilands, J.B.: Universal chemical assay for the detection and determination of siderophores. — Anal. Biochem. 160: 47–56, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Shindy, W.W., Smith, O.: Identification of plant hormones from cotton ovules. — Plant Physiol. 55: 550–554, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui, I.A., Shaukat, S.S., Hussain, S.I, Khan, A.: Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode Meloidogyne javanica in tomato. — World J. Microbiol. Biotechnol. 22: 641–650, 2006.

    Article  CAS  Google Scholar 

  • Siddiqui, Z.A.: PGPR: Prospective biocontrol agents of plant pathogens. — In: Siddiqui, Z.A. (ed.): PGPR: Biocontrol and Biocontrol. Pp. 112–142. Springer, Dordrecht 2006.

    Chapter  Google Scholar 

  • Stajković, O., Delić, D., Jošić, D., Kuzmanović, D., Rasulić, N., Knežević-Vukčević, J.: Improvement of common bean growth by co-inoculation with Rhizobium and plant growthpromoting bacteria. — Rom. Biotechnol. Lett. 16: 5919–5926, 2011.

    Google Scholar 

  • Sudhir, P., Murthy, S.D.S.: Effects of salt stress on basic processes of photosynthesis. — Photosynthetica 42: 481–486, 2004.

    Article  CAS  Google Scholar 

  • Tawfik, K.M.: Evaluating the use of rhizobacterin on cowpea plants grown under salt stress. — Res. J. Agr. Biol. Sci. 4: 26–33, 2008.

    CAS  Google Scholar 

  • Tsavkelova, E.A., Klimova, S.Y., Cherdyntseva, T.A., Netrusov, A.I.: Microbial producers of plant growth stimulators and their practical use: a review. — Appl. Biochem. Microbiol. 42: 117–126, 2006.

    Article  CAS  Google Scholar 

  • Vernon, L.P., Seely, G.R. (ed.): The Chlorophylls —Academic Press, New York — London 1966.

    Google Scholar 

  • Vogel, A.J.: A Text Book of Practical Organic Chemistry. 3rd Ed. — Longman Group Ltd., London 1975.

    Google Scholar 

  • Wei, Y., Xu, X.., Tao, H., Wang, P.: Growth performance and physiological response in the halophyte Lycium barbarum grown at salt-affected soil. — Ann. Appl. Biol. 149: 263–269, 2006.

    Article  CAS  Google Scholar 

  • Yang, J., Kloepper, J.W., Ryu, C.M.: Rhizosphere bacteria help plants tolerate abiotic stress. — Trends Plant Sci. 14: 1–4, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Yildirim, E., Turan, M., Donmez, M.F.: Mitigation of salt stress in radish (Raphanus sativus L.) by plant growth promoting rhizobacteria. — Roman. Biotechnol. Lett. 13: 3933–3943, 2008.

    Google Scholar 

  • Yue, H., Mo, W., Li, C., Zheng, Y., Li, H.: The salt stress relief and growth promotion effect of Rs-5 on cotton. — Plant Soil 297: 139–145, 2007.

    Article  CAS  Google Scholar 

  • Zahir, Z.A., Arshad, M., Frankenberger, W.T.: Plant growth promoting rhizobacteria: Applications and perspectives in agriculture. — Adv. Agron. 81: 97–168, 2004.

    Article  CAS  Google Scholar 

  • Zimmer, W., Kloos, K., Hundeshagen, B.: Auxin biosynthesis and denitrification in plant growth promotion bacteria. — In: Fendrik, I., del Gallo, M., Vanderleyden, J., de Zamaroczy, M., (ed.): Azospirillum VI and related microorganisms. NATO Advanced Sci. Inst., Ser. G. Ecol. Sci. 37: 120–141, 1995.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. I. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohamed, H.I., Gomaa, E.Z. Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescens on growth and pigment composition of radish plants (Raphanus sativus) under NaCl stress. Photosynthetica 50, 263–272 (2012). https://doi.org/10.1007/s11099-012-0032-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-012-0032-8

Additional key words

Navigation