Skip to main content
Log in

Essential oil composition and yield of a Rosmarinus officinalis L. natural population with an extended flowering season in a coastal Mediterranean environment and perspectives for exploitations

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

There are numerous and different uses of rosemary (Rosmarinus officinalis L.) essential oil (e.o.) and experimental results indicating which of the e.o. components is responsible for a specific biological activity. Consequently, it is worth to consider not only the seasonal variation of the the e.o. content but also the proportion of e.o. components that might vary according to season as well. Our aim was to determine the monthly variation in the e.o. composition, plant growth and e.o. yield of an almost continuously flowering rosemary natural population in a coastal Mediterranean environment, in order to understand the best utilization of e.o. according to the oil components detected by means of GC/MS along the different seasons. Alpha pinene ranging from 75.4 to 18.2% and eucalyptol from 15.6 to 3.5%, were the most represented components in all periods of samplings. Camphor and borneol increased in the samplings done after summer. Flowering occurred almost continuously except in the period from mid May to mid August. Production of e.o. was slightly affected by sampling period. The high concentration in alpha pinene, up to a level not recorded before according to the available literature, could be exploited for new pharmaceutical uses. The observation of leaves, stems and flowers by means of scanning electron microscopy, showed in all the examined plant parts the presence of glandular trichomes particularly numerous on leaves in the basal part of the adaxial lamina indicating the importance of leaves for e.o. production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrade JM, Faustino C, Garcia C, Ladeiras D, Reis CP, Rijo P (2018) Rosmarinus officinalis L.: an update review of its phytochemistry and biological activity. Future Sci OA 4(4):FSO283. https://doi.org/10.4155/fsoa-2017-0124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajalan I, Rouzbahani R, Ghasemi Pirbalouti A, Maggi F (2018) Quali-quantitative variation of essential oil from Iranian rosemary (Rosmarinus officinalis L.) accessions according to environmental factors. J Essent Oil Res 30(1):16–24

    Article  CAS  Google Scholar 

  • Boix YF, Pimentel Victório C, Antunes Defaveri AC, De Oliveira Arruda RDC, Sato A, Salgueiro Lage CL (2011) Glandular trichomes of Rosmarinus officinalis L.: anatomical and phytochemical analyses of leaf volatiles. Plant Biosyst Int J Deal Asp Plant Biol 145(4):848–856. https://doi.org/10.1080/11263504.2011.584075

    Article  Google Scholar 

  • Boutoial K, Ferrandini E, Rovira S, Garcia V, Lopez MB (2013) Effect of feeding goats with rosemary (Rosmarinus officinalis spp.) by-product on milk and cheese properties. Small Rum Res 112(1–3):147–153

    Article  Google Scholar 

  • Calvo MI, Akerrata S, Cavero RY (2011) Pharmaceutical ethnobotany in the Riverside of Navarra (Iberian Peninsula). J Ethnopharmacol 135(1):22–33

    Article  CAS  Google Scholar 

  • Chalchat JC, Garry R, Michet A, Benjilali B, Chabart JL (1993) Essential oils of rosemary (Rosmarinus officinalis L.). The chemical composition of oils of various origins (Morocco, Spain, France). J Essent Oil Res 5(6):613–618

    Article  CAS  Google Scholar 

  • da Silva Bomfim N, Kohiyama CY, Nakasugi LP, Nerilo SB, Mossini SAG, Romoli JCZ, Graton Mikcha JM, Abreu Filho BA, Machinski M Jr (2020) Antifungal and antiaflatoxigenic activity of rosemary essential oil (Rosmarinus officinalis L.) against Aspergillus flavus. Food Addit Contam 37(1):153–161. https://doi.org/10.1080/19440049.2019.1678771

    Article  CAS  Google Scholar 

  • Del Pilar Sanchez-Camargo A, Herrero M (2017) Rosemary (Rosmarinus officinalis) as a functional ingredient: recent scientific evidence. Curr Opin Food Sci 14:13–19

    Article  Google Scholar 

  • Delfine S, Loreto F, Pinelli P, Tognetti R, Alvino A (2005) Isoprenoids content and photosynthetic limitations in rosemary and spearmint plants under water stress. Agric Ecosyst Environ 106(2–3):243–252

    Article  CAS  Google Scholar 

  • Fellah O, Hameurlaine S, Bourenane N, Gherraf N, Zellagui A, Abidi A, Tahar A, Altun M, Demirtas I, Yagioglu AS (2018) Climatic factors as quality determinant of essential oils and phenolics in Rosmarinus officinalis L. (Lamiales Lamiaceae) collected from three geographic areas in Algeria. Biodivers J 9(3):187–194. https://doi.org/10.31396/Biodiv.Jour.2018

    Article  Google Scholar 

  • Figueiredo AC, Barroso JG, Pedro LG, Scheffer JJC (2008) Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Fragr J 23(4):213–226. https://doi.org/10.1002/ffj.1875

    Article  CAS  Google Scholar 

  • Filiptsova OV, Gazzavi-Rogozina LV, Timoshyna IA, Naboka OI, YeV Dyomina, Ochkur AV (2018) The effect of the essential oils of lavender and rosemary on the human short-term memory. Alex Med J 54(1):41–44. https://doi.org/10.1016/j.ajme.2017.05.004

    Article  Google Scholar 

  • Giacometti J, Bursać Kovačević D, Putnik P, Gabrić D, Bilušić T, Krešić G, Stulić V, Barba FJ, Chemat F, Barbosa-Cánovas G, Režek Jambrak A (2018) Extraction of bioactive compounds and essential oils from Mediterranean herbs by conventional and green innovative techniques: a review. Food Res Int 113:245–262. https://doi.org/10.1016/j.foodres.2018.06.036

    Article  CAS  PubMed  Google Scholar 

  • Gurbuz B, Bagdat RB, Uyanik M, Rezaeieh KAP (2016) Rosemary (Rosmarinus officinalis L.) cultivation studies under Ankara ecological conditions. Ind Crop Prod 88:12–16

    Article  CAS  Google Scholar 

  • Hossain MB, Barry-Ryan C, Martin-Diana AB, Brunton NP (1965) Optimisation of accelerated solvent extraction of antioxidant compounds from rosemary (Rosmarinus officinalis L.), marjoram (Origanum majorana L.) and oregano (Origanum vulgare L.) using response surface methodology. Food Chem 126:339–346

    Article  Google Scholar 

  • Kasuya H, Iida S, Ono K, Satou T, Koike K (2015) Intracerebral distribution of α-pinene and the anxiolytic-like effect in mice following inhaled administration of essential oil from chamaecyparis obtusa. Nat Prod Commun 10(8):1479–1482. https://doi.org/10.1177/1934578X1501000841

    Article  PubMed  Google Scholar 

  • Kim JC, Dinh TV, Oh HK, Son YS, Ahn JW, Song KY, Choi IY, Park CR, Suzlejko J, Kim KH (2019) The potential benefits of therapeutic treatment using gaseous terpenes at ambient low levels. Appl Sci 9(21):4507. https://doi.org/10.3390/app9214507

    Article  CAS  Google Scholar 

  • Lakušić DV, Ristić MS, Slavkovska VN, Šinžar-Sekulić JB, Lakušić BS (2012) Environment-related variations of the composition of the essential oils of rosemary (Rosmarinus officinalis L.) in the Balkan Peninsula. Chem Biodivers 9:1286–1302

    Article  Google Scholar 

  • Lakušić D, Ristić M, Slavkovska V, Lakušić B (2013) Seasonal variations in the composition of the essential oils of rosemary (Rosmarinus officinalis, Lamiaceae). Nat Prod Commun 8(1):131–134

    PubMed  Google Scholar 

  • Lerdau M, Matson P, Fall R, Monson R (1995) Ecological controls over monoterpene emissions from Douglas-fir (Pseudotsuga menziesii). Ecology 76(8):2640–2647. https://doi.org/10.2307/2265834

    Article  Google Scholar 

  • Llusià J, Penuelas J (2000) Seasonal patterns of terpene content and emission from seven Mediterranean woody species in field conditions. Am J Bot 87(1):133–140

    Article  Google Scholar 

  • Marin M, Koko V, Duletic-Lausevic S, Marin PD, Rancic D, Dajic-Stefanovic Z (2006) Glandular trichomes on the leaves of Rosmarinus officinalis: morphology, stereology and histochemistry. S Afr J Bot 72:378–382. https://doi.org/10.1016/j.sajb.2005.10.009

    Article  Google Scholar 

  • Miliauskas G, Venskutonis PR, van Beek TA (2004) Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem 85:231–237

    Article  CAS  Google Scholar 

  • Mulas M, Mulas G (2005) Cultivar selection from rosemary (Rosmarinus officinalis L.) spontaneous populations in the Mediterranean area. In: Jatisatienr A, Paratasilpin T, Elliott S, Anusarnsunthorn V, Wedge D, Craker LE, Gardner ZE (eds) Proceedings of WOCMAP III, Vol 2: conservation cultivation and sustainable use of MAPs. Acta Hort 676, ISHS 2005, p 128

  • Nieto Martinez G (2013) Incorporation of by-products of rosemary and thyme in the diet of ewes: effect on the fatty acid profile of lamb. Eur Food Res Technol 236:379–389

    Article  CAS  Google Scholar 

  • Nogués I, Muzzini V, Loreto F, Bustamante M (2015) Drought and soil amendment effects on monoterpene emission in rosemary plants. Sci Total Environ 15(538):768–778. https://doi.org/10.1016/j.scitotenv.2015.08.080

    Article  CAS  Google Scholar 

  • Penuelas J, Llusià J (1997) Effects of carbon dioxide, water supply, and seasonality on terpene content and emission by Rosmarinus officinalis. J Chem Ecol 23(4):979–993

    Article  CAS  Google Scholar 

  • Perry N, Perry E (2006) Aromatherapy in the management of psychiatric disorders. Clinical and neuro-pharmacological perspectives. CNS Drugs 20(4):257–280

    Article  CAS  Google Scholar 

  • Petiwala SM, Johnson JJ (2015) Diterpenes from rosemary (Rosmarinus officinalis): defining their potential for anti-cancer activity. Cancer Lett 367(2):93–102

    Article  CAS  Google Scholar 

  • Piluzza G, Bullitta S (2010) The dynamics of phenolic concentration in some pasture species and implications for animal husbandry. J Sci Food Agric 90:1452–1459. https://doi.org/10.1002/jsfa.3963

    Article  CAS  PubMed  Google Scholar 

  • Raffo A, Mozzanini E, Ferrari Nicoli S, Lupotto E, Cervelli C (2020) Effect of light intensity and water availability on plant growth, essential oil production and composition in Rosmarinus officinalis L. Eu Food Res Technol 246:167–177

    Article  CAS  Google Scholar 

  • Ribeiro-Santos R, Carvalho-Costa D, Cavaleiro C, Costa HS, Gonçalves Albuquerque T, Castilho MC, Ramose F, Melo NR, Sanches-Silva A (2015) A novel insight on an ancient aromatic plant: the rosemary (Rosmarinus officinalis L.). Trends Food Sci Technol 45(2):355–368

    Article  CAS  Google Scholar 

  • Rivas da Silva AC, Lopes PM, Barros de Azevedo MM, Costa DC, Alviano CS, Alviano DS (2012) Biological activities of α-pinene and β-pinene enantiomers. Molecules 17(6):6305–6316. https://doi.org/10.3390/molecules17066305

    Article  CAS  PubMed  Google Scholar 

  • Salehi B, Upadhyay S, Erdogan Orhan I, Kumar Jugran A, Jayaweera SLD, Dias DA, Sharopov F, Taheri Y, Martins N, Baghalpour N, Cho WC, Sharifi-Rad J (2019) Therapeutic potential of α- and β-pinene: a miracle gift of nature. Biomolecules 2(9):738. https://doi.org/10.3390/biom9110738

    Article  CAS  Google Scholar 

  • Salido S, Altarejos J, Nogueras M, Sanchez A, Luque P (2003) Chemical composition and seasonal variations of rosemary oil from southern Spain. J Essent Oil Res 15:10–14

    Article  CAS  Google Scholar 

  • Sangwan N, Farooqi A, Shabih F, Sangwan RS (2001) Regulation of essential oil production in plants. Plant Growth Regul 34:3–21. https://doi.org/10.1023/a:1013386921596

    Article  CAS  Google Scholar 

  • Sarmoum R, Soumia H, Mohamed B, Zahreddine D, Bachar Z, Othmane M (2019) Effect of salinity and water stress on the essential oil components of rosemary (Rosmarinus officinalis L.). Agronomy 9(5):214. https://doi.org/10.3390/agronomy9050214

    Article  CAS  Google Scholar 

  • Sayorwan W, Ruangrungsi N, Piriyapunyporn T, Hongratanaworakit T, Kotchabhakdi N, Siripornpanich V (2013) Effects of inhaled rosemary oil on subjective feelings and activities of the nervous system. Sci Pharm 81(2):531–542. https://doi.org/10.3797/scipharm.1209-05

    Article  CAS  PubMed  Google Scholar 

  • Schurgers G, Arneth A, Holzinger R, Goldstein A (2009) Process-based modelling of biogenic monoterpene emissions combining production and release from storage. Atmos Chem Phys Discuss 9:271–307

    Article  Google Scholar 

  • Serralutzu F, Ricelli A, Stangoni AP, Teckagne S, Re GA, Dore A, Bullitta S (2019) Cropping a natural population of Rosmarinus officinalis L. from N.W. Sardinia. Morpho-phenologic variability and biological activity of essential oil. In: Book of abstracts of the XVI congress of the Italian Society of Phytochemistry jointly with 2nd international congress on edible medicinal plants (ICEMAP 2019), Alghero, 19-21/06/2019, P05

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am J Enol Viticult 16:144–158

    CAS  Google Scholar 

  • Souri MK, Bakhtiarizade M (2019) Biostimulation effects of rosemary essential oil on growth and nutrient uptake of tomato seedlings. Sci Hortic 243:472–476

    Article  CAS  Google Scholar 

  • Ueno H, Shimada A, Suemitsu S, Murakami S, Kitamura N, Wani K, Matsumoto Y, Okamoto M, Ishihara T (2019) Attenuation effects of alpha-pinene inhalation on mice with dizocilpine-induced psychiatric-like behaviour. Evid Based Complement Altern Med 1:1–12. https://doi.org/10.1155/2019/2745453

    Article  Google Scholar 

  • Villareal MO, Ikeya A, Sasaki K, Arfa AB, Neffati M, Isoda H (2017) Anti-stress and neuronal cell differentiation induction effects of Rosmarinus officinalis L. essential oil. BMC Complement Altern Med 17(1):549. https://doi.org/10.1186/s12906-017-2060-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q (2018) Response of plant secondary metabolites to environmental factors. Molecules 23(4):762. https://doi.org/10.3390/molecules23040762

    Article  CAS  PubMed Central  Google Scholar 

  • Yokouchi Y, Ambe Y (1984) Factors affecting the emission of monoterpenes from red pine (Pinus densiflora). Plant Physiol 75:1009–1012

    Article  CAS  Google Scholar 

  • Zhang Y, Adelakun TA, Qu L, Li X, Li J, Han L, Wang T (2014) New terpenoid glycosides obtained from Rosmarinus officinalis L. aerial parts. Fitoterapia 99:78–85. https://doi.org/10.1016/j.fitote.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  • Zheljakov VD, Astatkie T, Zhalnov I, Georgieva TD (2015) Method for attaining rosemary essential oil with differential composition from dried of fresh material. J Oleo Sci 64(5):485–496

    Article  Google Scholar 

  • Zou J, Gates RG (1995) Foliage constituents of douglas fir (Pseudotsuga menziesii (Mirb.) Franco (Pinaceae)): their seasonal variation and potential role in douglas fir resistance and silviculture management. J Chem Ecol 21:387–402

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simonetta Bullitta.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serralutzu, F., Stangoni, A., Amadou, B. et al. Essential oil composition and yield of a Rosmarinus officinalis L. natural population with an extended flowering season in a coastal Mediterranean environment and perspectives for exploitations. Genet Resour Crop Evol 67, 1777–1793 (2020). https://doi.org/10.1007/s10722-020-00939-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-020-00939-y

Keywords

Navigation