Skip to main content
Log in

Diverse morphological and cytogenetic variation and differentiation of the two subspecies in Aegilops geniculata Roth, a wild relative of wheat

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Aegilops geniculata Roth, a wild relative of wheat (2n = 4x = 28, genome UUMM), is distributed over the Mediterranean basin and nearby areas. The species consists of two subspecies, subsp. geniculata and subsp. gibberosa (Zhuk.) Hammer. The former is distributed over the whole species area and has been genetically analyzed, and the latter is endemic to Spain and North Africa and has not been genetically evaluated. In this study, to clarify the genetic variation and delineation of the two subspecies from a biosystematic viewpoint, morphological variation among 23 accessions of subsp. geniculata and three of subsp. gibberosa and chromosome pairing at meiosis and fertility in their intra- and inter-subspecific F1 hybrids were examined. A principal component analysis based on the 11 spike characteristics clearly divided the 26 accessions into two groups representing the two subspecies. The inter-subspecific F1 hybrids showed significantly lower frequencies of chromosome pairing, significantly higher frequencies of multivalents, and significantly lower fertilities relative to those of the intra-subspecific F1 hybrids. It was concluded that wide-ranging cytogenetic variation is included in subsp. geniculata, that subsp. gibberosa, the intra-subspecific variation of which is small, is morphologically and cytogenetically differentiated from subsp. geniculata beyond the range of the intra-subspecific variation of subsp. geniculata, and that the two subspecies are effectively isolated reproductively by hybrid sterility. The results strongly suggested that western North Africa is one of the important diversity centers of Ae. geniculata, where two subspecies were differentiated in the past and grow together in the present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aghaee-Sarbarzeh M, Ferrahi M, Singh S, Singh H, Friebe B, Gill BS, Dhaliwal HS (2002) Ph 1-induced transfer of leaf and stripe rust-resistance genes from Aegilops triuncialis and Ae. geniculata to bread wheat. Euphytica 127:377–382

    Article  CAS  Google Scholar 

  • Arrigo N, Felber F, Parisod C, Buerki S, Alvarez N, David J, Guadagnuolo R (2010) Origin and expansion of the allotetraploid Aegilops geniculata, a wild relative of wheat. New Phytol 187:1170–1180

    Article  CAS  PubMed  Google Scholar 

  • Badaeva ED, Amosova AV, Samatadze TE, Zoshchuk SA, Shostak NG, Chikida NN, Zelenin AV, Raupp WJ, Friebe B, Gill BS (2004) Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster. Plant Syst Evol 246:45–76

    Article  CAS  Google Scholar 

  • Bandou H, Rodriguez-Quijano M, Carrillo JM, Branlard G, Zaharieva M, Monneveux P (2009) Morphological and genetic variation in Aegilops geniculata from Algeria. Plant Syst Evol 277:85–97

    Article  Google Scholar 

  • Bor NL (1970) Gramineae-Triticeae. In: Rechinger KH (ed) Flora Iranica 70, Akademische Druck- u. Verlagsanstalt, Graz, pp 147–244

    Google Scholar 

  • Clausen J, Keck DD, Hiesey WM (1939) The concept of species based on experiment. Am J Bot 26:103–106

    Article  Google Scholar 

  • Eig A (1929) Monographisch-kritische Uebersicht der Gattung Aegilops. Repert Spec Nov Regni Veget 55:1–228

    Google Scholar 

  • Eig A (1936) Aegilops L. In: Hanning E, Winkler H (eds) Die Pflanzenareale 4. Fischer, Jena, pp 43–50

    Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Article  Google Scholar 

  • Furuta Y (1981) Chromosome structural variation in Aegilops ovata L. Jpn J Genet 56:287–294

    Article  Google Scholar 

  • Furuta Y, Ohta S (1996) A preliminary report of ‘The Gifu University scientific exploration in the Mediterranean region in 1995 (GSEM95)’. Faculty of Agriculture, Gifu Univ, Gifu, pp 71

    Google Scholar 

  • Hammer K (1980) Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten: Aegilops L. Kulturpflanze 28:33–180

    Article  Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Jiang J, Friebe B, Gill BS (1994) Recent advances in alien gene transfer in wheat. Euphytica 73:199–212

    Article  Google Scholar 

  • Kihara H (1937) Genomanalyse bei Triticum und Aegilops. VII. Kurze Übersicht über die Ergebnisse der Jahre 1934–1936. Memoirs of the College of Agriculture, Kyoto University 41:1–61

    Google Scholar 

  • Kihara H (1963) Interspecific relationship in Triticum and Aegilops. Seiken Ziho 15:1–12

    Google Scholar 

  • Kihara H, Tanaka M (1970) Addendum to the classification of the genus Aegilops by means of genome-analysis. Wheat Inf Serv 30:1–2

    Google Scholar 

  • Kilian B, Mammen K, Millet E, Sharma R, Graner A, Salamini F, Hammer K, Özkan H (2011) Aegilops. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, cereals. Springer, Berlin, pp 1–76

    Google Scholar 

  • Kimber G (1983) Genome analysis in the genus Triticum. In: Sakamoto S (ed) Proceedings of the 6th International Wheat Genetics Symposium. Plant Germ-plasm Inst, Kyoto, pp 23–28

    Google Scholar 

  • Kimber G, Yen Y (1989) Hybrids involving wheat relatives and autotetraploid Triticum umbellulatum. Genome 32:1–5

    Article  Google Scholar 

  • Kuraparthy V, Chhuneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS (2007) Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet 114:1379–1389

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Rouse M, Friebe B, Jin Y, Gill B, Pumphrey MO (2011) Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin. Chromosome Res 19:669–682

    Article  CAS  PubMed  Google Scholar 

  • Maire R (1955) Flore de l’Afrique du Nord 3. Paul Lechevalier, Paris, p 399

    Google Scholar 

  • Mayr E (2000) The biological species concept. In: Wheeler QD, Meier R (eds) Species concepts and phylogenetic theory. Columbia University Press, New York, pp 17–29

    Google Scholar 

  • Médail F, Diadema K (2009) Glacial refugia influence plant diversity pattern in the Mediterranean Basin. J Biogeogr 36:1333–1345

    Article  Google Scholar 

  • Moyle LC, Olson MS, Tiffin P (2004) Patterns of reproductive isolation in three angiosperm genera. Evolution 58:1195–1208

    Article  PubMed  Google Scholar 

  • Ohta S (1991) Phylogenetic relationship of Aegilops mutica Boiss. with the diploid species of congeneric Aegilops-Triticum complex, based on the new method of genome analysis using its B-chromosomes. Memoirs of the College of Agriculture, Kyoto University 137:1–116

    Google Scholar 

  • Ohta S (1999) Hybrid sterility as a reproductive barrier isolating the two subspecies of Aegilops geniculata Roth (Gramineae). Isr J Plant Sci 47:89–95

    Article  Google Scholar 

  • Ohta S, Zine Elabidine F, Morikawa T, Tominaga T, Mellas H, Furuta Y (1997) Report on a cooperative cereal germplasm collection mission in Morocco. Al Awamia 97:51–64

    Google Scholar 

  • Rieseberg LH, Willis JH (2007) Plant speciation. Science 317:910–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh H, Dhaliwal HS (2000) Intraspecific genetic diversity for resistance to wheat rusts in wild Triticum and Aegilops species. Wheat Inf Serv 90:21–30

    Google Scholar 

  • Stebbins GL (1945) The cytological analysis of species hybrids. II. Bot Rev 11:463–486

    Article  Google Scholar 

  • Stoilova T, Spetsov P (2006) Chromosome 6U from Aegilops geniculata Roth carrying powdery mildew resistance in bread wheat. Breed Sci 56:351–357

    Article  Google Scholar 

  • van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Ambryopyrum (Jaub. & Spach) Eig (Poaceae). Agricultural University, Wageningen, pp 512

  • Waines JG, Barnhart D (1992) Biosystematic research in Aegilops and Triticum. Hereditas 116:207–212

    Article  Google Scholar 

  • Widmer A, Lexer C, Cozzolino S (2009) Evolution of reproductive isolation in plants. Heredity 102:31–38

    Article  CAS  PubMed  Google Scholar 

  • Zaharieva M, Gaulin E, Havaux M, Acevedo E, Monneveux P (2001) Drought and heat responses in the wild wheat relative Aegilops geniculata Roth: potential interest for wheat improvement. Crop Sci 41:1321–1329

    Article  Google Scholar 

  • Zaharieva M, Dimov A, Santkova P, David J, Monneveix P (2003) Morphological diversity and potential interest for wheat improvement of three Aegilops L. species from Bulgaria. Genet Resour Crop Evol 50:507–517

    Article  Google Scholar 

  • Zhukovsky PM (1928) A critical-systematical survey of the species of the genus Aegilops L. Bull Appl Bot Genet Plant Breed 18:417–609

    Google Scholar 

  • Zohary D, Feldman M (1962) Hybridization between amphidiploids and the evolution of polyploids in the wheat (Aegilops-Triticum) group. Evolution 16:44–61

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks Ms Miyuki Hattori and Mr Kazumitsu Imukai, Fukui Prefectural University, Japan for measuring spike morphology and evaluating pollen and seed fertility. The author also thanks Dr. Laura A. Morrison, Oregon State University, USA; the Plant Germ-plasm Institute, Kyoto University, Japan; National BioResource Project-WHEAT, Japan; and the National Institute of Agrobiological Science (NIAS), Japan for kindly providing the materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoji Ohta.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohta, S. Diverse morphological and cytogenetic variation and differentiation of the two subspecies in Aegilops geniculata Roth, a wild relative of wheat. Genet Resour Crop Evol 64, 2009–2020 (2017). https://doi.org/10.1007/s10722-017-0492-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-017-0492-6

Keywords

Navigation