Skip to main content
Log in

Genetic diversity in sorghum [Sorghum bicolor (L.) Moench] germplasm from Southern Africa as revealed by microsatellite markers and agro-morphological traits

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Cultivated sorghum [Sorghum bicolor (L.) Moench] is an important food security crop in the semi-arid regions of the world including Asia and Africa. Its genetic diversity is contained mostly in traditional varieties and modern cultivars used by farmers. In this study, agro-morphological traits and molecular markers were used to assess genetic diversity in 22 accessions of cultivated sorghum from five countries (Botswana, Namibia, Swaziland, Zambia and Zimbabwe) in the Southern African Development Community (SADC) region. The study revealed a significant variation among 22 accessions in both qualitative and quantitative morphological traits, indicating the accessions’ promising potential as breeding material. For molecular analysis, 11 microsatellite primer-pairs were used, and generated a total of 70 alleles across 20 accessions. Analysis of molecular variance revealed a high level of genetic variation; 67 % among the accessions and 10 % among the five countries. The patterns of genetic diversity and the relationships observed in this study should provide insights for genetic resource conservation and utilization of sorghum germplasm in the SADC region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdi A, Bekele E, Asfaw Z, Teshome A (2002) Patterns of morphological variation of sorghum (Sorghum bicolor (L.) Moench) landraces in qualitative characters in North Shewa and South Welo, Ethiopia. Hereditas 137:161–172

    Article  Google Scholar 

  • Ali MA et al (2011) Morpho-physiological diversity and its implications for improving drought tolerance in grain sorghum at different growth stages. Aust J Crop Sci 5:311–320

    Google Scholar 

  • Ayana A, Bryngelsson T, Bekele E (2000) Genetic variation of Ethiopian and Eritrean sorghum (Sorghum bicolor (L.) Moench) germplasm assessed by random amplified polymorphic DNA (RAPD). Genet Resour Crop Evol 47:471–482

    Article  Google Scholar 

  • Bekele E, Geleta M, Dagne K, Jones AL, Barnes I, Bradman N, Thomas MG (2007) Molecular phylogeny of genus Guizotia (Asteraceae) using DNA sequences derived from ITS. Genet Resour Crop Evol 54:1419–1427

    Article  CAS  Google Scholar 

  • Brown SM et al (1996) Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 93:190–198. doi:10.1007/BF00225745

    Article  CAS  PubMed  Google Scholar 

  • Bucheyeki TL, Gwanama C, Mgonja M, Chisi M, Folkertsma R, Mutegi R (2009) Genetic variability characterisation of Tanzania sorghum landraces based on simple sequence repeats (SSRs) molecular and morphological markers. Afr Crop Sci J 17:71–86

  • Dean R, Dahlberg J, Hopkins M, Mitchell S, Kresovich S (1999) Genetic redundancy and diversity among ‘Orange’ accessions in the US national sorghum collection as assessed with simple sequence repeat (SSR) markers. Crop Sci 39:1215–1221

    Article  Google Scholar 

  • Deu M, Rattunde F, Chantereau J (2006) A global view of genetic diversity in cultivated sorghums using a core collection. Genome 49:168–180. doi:10.1139/g05-092

    CAS  PubMed  Google Scholar 

  • Deu M et al (2008) Niger-wide assessment of in situ sorghum genetic diversity with microsatellite markers. Theor Appl Genet 116:903–913. doi:10.1007/s00122-008-0721-7

    Article  CAS  PubMed  Google Scholar 

  • Dillon SL, Lawrence PK, Henry RJ (2005) The new use of Sorghum bicolor-derived SSR markers to evaluate genetic diversity in 17 Australian sorghum species. Plant Genet Resour 3:19–28. doi:10.1079/PGR200454

    Article  CAS  Google Scholar 

  • Dje Y, Heuertz M, Lefebvre C, Vekemans X (2000) Assessment of genetic diversity within and among germplasm accessions in cultivated sorghum using microsatellite markers. Theor Appl Genet 100:918–925

    Article  CAS  Google Scholar 

  • Djè Y, Forcioli D, Ater M, Lefèbvre C, Vekemans X (1999) Assessing population genetic structure of sorghum landraces from North-western Morocco using allozyme and microsatellite markers. Theor Appl Genet 99:157–163. doi:10.1007/s001220051220

    Article  Google Scholar 

  • Djè Y, Heuertz M, Ater M, Lefèbvre C, Vekemans X (2004) In situ estimation of outcrossing rate in sorghum landraces using microsatellite markers. Euphytica 138:205–212

    Article  Google Scholar 

  • Doggett H (1988) Sorghum, vol 2. Wiley, New York

    Google Scholar 

  • Ellstrand N, Foster K (1983) Impact of population structure on the apparent outcrossing rate of grain sorghum (Sorghum bicolor). Theor Appl Genet 66:323–327

    CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under linux and windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Folkertsma RT, Rattunde HFW, Chandra S, Raju GS, Hash CT (2005) The pattern of genetic diversity of Guinea-race Sorghum bicolor (L.) Moench landraces as revealed with SSR markers. Theor Appl Genet 111:399–409

  • Ganesamurthy K, Punitha D, Elangovan M (2010) Genetic diversity among the land races of sorghum collected in Tamil Nadu. Electron J Plant Breed 1:1375–1379

    Google Scholar 

  • Geleta N, Labuschagne MT, Viljoen CD (2006) Genetic diversity analysis in sorghum germplasm as estimated by AFLP, SSR and morpho-agronomical markers. Biodivers Conserv 15:3251–3265

    Article  Google Scholar 

  • Geleta M, Herrera I, Monzón A, Bryngelsson T (2012) Genetic diversity of arabica coffee (Coffea arabica L.) in Nicaragua as estimated by simple sequence repeat markers. Sci World J 2012:11. doi:10.1100/2012/939820

    Google Scholar 

  • Ghebru B, Schmidt R, Bennetzen J (2002) Genetic diversity of Eritrean sorghum landraces assessed with simple sequence repeat (SSR) markers. Theor Appl Genet 105:229–236. doi:10.1007/s00122-002-0929-x

    Article  CAS  PubMed  Google Scholar 

  • Goff SA et al (2002) A draft sequence genome (Oryza sativa L. ssp japonica). Science 296:92–100

    Article  CAS  PubMed  Google Scholar 

  • Grenier C, Deu M, Kresovich S, Bramel-Cox P, Hamon P (2000) Assessment of genetic diversity in three subsets constituted from the ICRISAT sorghum collection using random vs non-random sampling procedures B. Using molecular markers. Theor Appl Genet 101:197–202

    Article  CAS  Google Scholar 

  • Harlan J, De Wet J (1972) A simplified classification of cultivated sorghum. Crop Sci 12:172–176

    Article  Google Scholar 

  • ICRISAT, IBPGRI (1993) Descriptors for Sorghum (Sorghum bicolor (L.) Moench). International Board for Plant Genetic Resources, International Crops Research Institute for Semi-Arid Tropics Patancheru India

  • Jiang S-Y, Ma Z, Vanitha J, Ramachandran S (2013) Genetic variation and expression diversity between grain and sweet sorghum lines. BMC Genom 14:1–18

    Article  Google Scholar 

  • Kumar MM, Kumar KMH (2009) Estimation of genetic variability among sorghum genotypes using SSR markers. Mysore J Agric Sci 43:744–748

    Google Scholar 

  • Lockton S, Gaut B (2005) Plant conserved non-coding sequences and paralogue evolution. Trends Genet 21:60–65

    Article  CAS  PubMed  Google Scholar 

  • Motlhaodi T, Geleta M, Bryngelsson T, Fatih M, Chite S, Ortiz R (2014) Genetic diversity in ex situ conserved sorghum accessions of Botswana as estimated by microsatellite markers. Aust J Crop Sci 8:35–43

    Google Scholar 

  • Nei M (1973) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

  • Nei M, Li W-H (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci 76:5269–5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng’uni D, Geleta M, Fatih M, Bryngelsson T (2010) Phylogenetic analysis of the genus Sorghum based on combined sequence data from cpDNA regions and ITS generate well-supported trees with two major lineages. Ann Bot 105:471–480

  • Ng’uni D, Geleta M, Bryngelsson T (2011) Genetic diversity in sorghum (Sorghum bicolor (L.) Moench) accessions of Zambia as revealed by simple sequence repeats (SSR). Hereditas 148:52–62. doi:10.1111/j.1601-5223.2011.02208.x

    Article  PubMed  Google Scholar 

  • Ng’uni D, Geleta M, Hofvander P, Fatih M, Bryngelsson T (2012) Comparative genetic diversity and nutritional quality variation among some important Southern African sorghum accessions [Sorghum bicolor (L.) Moench]. Aust J Crop Sci 6:56–64

    Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  CAS  PubMed  Google Scholar 

  • Page RD (1996) Tree View An application to display phylogenetic trees on personal computer. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Paterson A et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  • Pavlicek A, Hrda S, Flegr J (1999) Free-Tree-freeware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of genus Frenkelia. Folia Biol 45:97–99

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Prabhash K, Khanna VK (2009) Assessment of genetic diversity in cultivated sorghum (Sorghum bicolor (L.) Moench) accessions using microsatellite markers. Pantnagar J Res 7:143–149

    Google Scholar 

  • Ritter K, McIntyre C, Godwin I, Jordan D, Chapman S (2007) An assessment of the genetic relationship between sweet and grain sorghums, within Sorghum bicolor ssp. bicolor (L.) Moench, using AFLP markers. Euphytica 157:161–176

    Article  CAS  Google Scholar 

  • Shehzad T, Okuizumi H, Kawase M, Okuno K (2009) Development of SSR-based sorghum (Sorghum bicolor (L.) Moench) diversity research set of germplasm and its evaluation by morphological traits. Genet Resour Crop Evol 56:809–827

  • Singh M, Boora KS (2008) Genetic diversity among forage sorghum [Sorghum bicolor (L.) Moench] accessions using simple sequence repeats. SABRAO J Breed Genet 40:77–91

    Google Scholar 

  • Softgenetics (2012) Genemarker software version 2.2.0

  • SPGRC (2014) Twenty-fourth annual report. SADC Plant Genetic Resources Centre, Lusaka, Zambia

    Google Scholar 

  • Thudi M, Fakrudin B (2011) Identification of unique alleles and assessment of genetic diversity of rabi sorghum accessions using simple sequence repeat markers. J Plant Biochem Biotechnol 20:74–83

    Article  Google Scholar 

  • Uptmoor R, Wenzel W, Friedt W, Donaldson G, Ayisi K, Ordon F (2003) Comparative analysis on the genetic relatedness of Sorghum bicolor accessions from Southern Africa by RAPDs, AFLPs and SSRs. Theor Appl Genet 106:1316–1325. doi:10.1007/s00122-003-1202-7

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    Article  CAS  PubMed  Google Scholar 

  • Westman AL, Kresovich S (1997) Use of molecular marker techniques for description of plant genetic variation. In: Callow JA, Ford-Lloyd JA, Newbury HJ (eds) Biotechnology and plant genetic resources: conservation and use. CAB International, Oxford, pp 9–48

  • Yeh FC, Yang R-C, Boyle T (1999) POPGENE version 1.31 Microsoft Window-based freeware for population genetic analysis. University of Alberta, Edmonton

    Google Scholar 

  • Zheng L et al (2011) Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biol 12:1–14

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this project was provided by Sida through the SADC Plant Genetic Resources Centre. Field work was financed by the Government of Botswana. We are grateful to the governments of Botswana, Namibia, Swaziland, Zambia and Zimbabwe for providing germplasm used in the study. We are greatly indebted to the staff at the National Plant Genetic Resources Centre in Botswana for management of field experiments and field data recording.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiny Motlhaodi.

Ethics declarations

Conflict of interest statement

The authors represent that there is no conflict of interest in the subject matter or materials discussed in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motlhaodi, T., Geleta, M., Chite, S. et al. Genetic diversity in sorghum [Sorghum bicolor (L.) Moench] germplasm from Southern Africa as revealed by microsatellite markers and agro-morphological traits. Genet Resour Crop Evol 64, 599–610 (2017). https://doi.org/10.1007/s10722-016-0388-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-016-0388-x

Keywords

Navigation