Skip to main content
Log in

TaqSH1-D, wheat ortholog of rice seed shattering gene qSH1, maps to the interval of a rachis fragility QTL on chromosome 3DL of common wheat (Triticum aestivum)

  • Short Communication
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Wheat domestication was a crucial step in the evolution of stable human societies. The loss of rachis brittleness is a major change that differentiates the earliest forms of domesticated wheat from their wild ancestors. We recently identified a novel quantitative trait locus (QTL) for rachis fragility on the long arm of chromosome 3D using an F2 mapping population derived from the cross between Triticum aestivum ‘Chinese Spring’ (CS) and a synthetic wheat line, S-6214. Here, we show that the QTL region, in the deletion bin 3DL2-0.27-0.81, is syntenous to the rice chromosome 1 region harboring the seed shattering gene qSH1. We isolated the wheat qSH1 ortholog, TaqSH1-D, on chromosome 3DL. The gene mapped into the confidence interval of the rachis fragility QTL, indicating that it represents a potential candidate gene. Sequence comparison between the parental lines revealed a 189-bp repetitive sequence insertion located 275 bp downstream of the translation termination site of the gene in CS. Although the putative parental proteins are identical, as in rice, a polymorphism in the regulatory regions may specifically affect its control of rachis fragility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo M-C, Sehgal V, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie WR, Hall A, Mayer KFX, Edwards KJ, Bevan MW, Hall N (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown TA, Jones MK, Powell W, Allaby RG (2008) The complex origins of domesticated crops in the fertile crescent. Cell. doi:10.1016/j.tree.2008.09.008

    Google Scholar 

  • Dabbert T, Okagaki RJ, Cho S, Heinen S, Boddu J, Muehlbauer GJ (2010) The genetics of barley low-tillering mutants: low number of tillers-1 (lnt1). Theor Appl Genet 121:705–715

    Article  CAS  PubMed  Google Scholar 

  • Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploidy wheat under domestication. Science 316:1862–1866

    Article  CAS  PubMed  Google Scholar 

  • Faris JD (2014) Wheat domestication: key to agricultural revolutions past and future. In: Tuberosa R, Graner A, Frison E (eds) Genomics of plant genetic resources. vol 1. Managing, sequencing and mining genetic resources, Springer, Netherlands, pp 439–464

    Chapter  Google Scholar 

  • Jantasuriyarat C, Vales MI, Watson CJW, Riera-Lizarazu O (2004) Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor Appl Genet 108:261–273

    Article  CAS  PubMed  Google Scholar 

  • Ji H, Kim SR, Kim YH, Kim H, Eun MY, Jin ID, Cha YS, Yun DW, Ahn BO, Lee MC, Lee GS, Yoon UH, Lee JS, Lee YH, Suh SC, Jiang W, Jl Yang, Jin P, McCouch SR, An G, Koh HJ (2010) Inactivation of the CTD phosphatase-like gene OsCPL1 enhances the development of the abscission layer and seed shattering in rice. Plant J 61:96–106

    Article  CAS  PubMed  Google Scholar 

  • Jiang YF, Lan XJ, Luo W, Kong XC, Qi PF, Wang JR, Wei YM, Jiang QT, Liu YX, Peng YY, Chen GY, Chen SF, Zheng YL (2014) Genome-wide quantitative trait locus mapping identifies multiple major loci for brittle rachis and threshability in Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum Shao). PLoS ONE 9(12):e114066. doi:10.1371/journal.pone.0114066

    Article  PubMed Central  PubMed  Google Scholar 

  • Katkout M, Kishii M, Kawaura K, Mishina K, Sakuma S, Umeda K, Takumi S, Nitta M, Nasuda S, Ogihara Y (2014) QTL analysis of genetic loci affecting domestication-related spike characters in common wheat. Genes Genet Syst 89:121–131

    Article  CAS  PubMed  Google Scholar 

  • Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M (2006) An SNP caused loss of seed shattering during rice domestication. Science 312:1392–1396

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Li W, Gill BS (2006) Multiple genetic pathways for seed shattering in the grasses. Funct Integr Genomics 6:300–309

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zhou O, Sang T (2006) Rice domestication by reducing shattering. Science 311:1936–1939

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Li X, Shannon LM, Yeh CT, Wang ML, Bai G, Peng Z, Li J, Trick HN, Clemente TE, Doebley J, Schnable PS, Tuinstra MR, Tesso TT, White F, Yu J (2012) Parallel domestication of the Shattering1 genes in cereals. Nat Genet. doi:10.1038/ng.2281

    Google Scholar 

  • Liu C, Teo ZWN, Bi Y, Song S, Xi W, Yang X, Yin Z, Yu H (2013) A conserved genetic pathway determines inflorescence architecture in Arabidopsis and rice. Dev Cell 24:612–622

    Article  CAS  PubMed  Google Scholar 

  • Mizumoto K, Hatano H, Hirabayashi C, Murai K, Takumi S (2011) Characterization of wheat Bell1-type homeobox genes in floral organs of alloplasmic lines with Aegilops crassa cytoplasm. BMC Plant Biol 11:2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Müller J, Wang Y, Franzen R, Santi L, Salamini F, Rohde W (2001) In vitro interactions between barley TALE homeodomain proteins suggest a role for protein-protein associations in the regulation of Knox gene function. Plant J 27(1):13–23

    Article  PubMed  Google Scholar 

  • Nalam VJ, Vales MI, Watson CJW, Kianian SF, Riera-Lizarazu O (2006) Map-based analysis of genes affecting brittle rachis character in tetraploid wheat (Triticum turgidum L.). Theor Appl Genet 112:373–381

    Article  CAS  PubMed  Google Scholar 

  • Roeder AH, Ferrándiz C, Yanofsky MF (2003) The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit. Curr Biol 13:1630–1635

    Article  CAS  PubMed  Google Scholar 

  • Salamini F, Ozkan H, Brandolini A, Schäfer-Pregl R, Martin W (2002) Genetics and geography of wild cereal domestication in the near East. Nat Rev Genet 3:429–441

    CAS  PubMed  Google Scholar 

  • Simons KJ, Fellers JP, Trick HN, Zhang Z, Tai Y-S, Gill BS, Faris JD (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172:547–555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25

    Article  CAS  PubMed  Google Scholar 

  • Subudhi PK, Singh PK, DeLeon T, Parco A, Karan R, Biradar H, Cohn MA, Sasaki T (2013) Mapping of seed shattering loci provides insights into origin of weedy rice and rice domestication. J Hered. doi:10.1093/jhered/est089

    PubMed  Google Scholar 

  • The International Wheat Genome Sequencing Consortium (IWGSC) (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345(6194):1251788-1–1251788-11

    Article  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2005) Windows QTL Cartographer v2.5. Department of Statistics, North Carolina State University, Raleigh, NC. (http://statgen.ncsu.edu/qtcart/WQTLCart.htm)

  • Watanabe N, Sugiyama K, Yamagashi Y, Sakata Y (2002) Comparative telosomic mapping of homoeologous genes for brittle rachis in tetraploid and hexaploid wheats. Hereditas 137:180–185

    Article  Google Scholar 

  • Watanabe N, Takesada N, Fujii Y, Martinek P (2005) Comparative mapping of genes for brittle rachis in Triticum and Aegilops. Czech J Genet Plant Breed 41:39–44

    Google Scholar 

  • Watanabe N, Fujii Y, Kato N, Ban T, Martinek P (2006) Microsatellite mapping of the genes for brittle rachis on homoeologous group 3 chromosomes in tetraploid and hexaploid wheats. J Appl Genet 47(2):93–98

    Article  PubMed  Google Scholar 

  • Zeng Z (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zeng Z (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou Y, Lu D, Li C, Luo J, Zhu B-F, Zhu J, Shangguan Y, Wang Z, Sang T, Zhou B, Han B (2012) Genetic control of seed shattering in rice by the APETALA2 transcription factor SHATTERING ABORTION1. Plant Cell 24:1034–1048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by Grants-in-Aid for scientific research in the priority area “Comparative Genomics” from the Ministry of Education, Culture, Sports, Science and Technology of Japan. This is contribution No. 1020 from the Kihara Institute for Biological Research, Yokohama City University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunari Ogihara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katkout, M., Sakuma, S., Kawaura, K. et al. TaqSH1-D, wheat ortholog of rice seed shattering gene qSH1, maps to the interval of a rachis fragility QTL on chromosome 3DL of common wheat (Triticum aestivum). Genet Resour Crop Evol 62, 979–984 (2015). https://doi.org/10.1007/s10722-015-0301-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-015-0301-z

Keywords

Navigation