Skip to main content
Log in

Microsatellite mapping of the genes for brittle rachis on homoeologous group 3 chromosomes in tetraploid and hexaploid wheats

  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

The brittle rachis character, which causes spontaneous shattering of spikelets, has an adaptive value in wild grass species. The lociBr 1 andBr 2 in durum wheat (Triticum durum Desf.) andBr 3 in hexaploid wheat (T. aestivum L.) determine disarticulation of rachides above the junction of the rachilla with the rachis such that a fragment of rachis is attached below each spikelet. Using microsatellite markers, the lociBr 1 ,Br 2 andBr 3 were mapped on the homoeologous group 3 chromosomes. TheBr 2 locus was located on the short arm of chromosome 3A and linked with the centromeric marker,Xgwm32, at a distance of 13.3 cM. TheBr 3 locus was located on the short arm of chromosome 3B and linked with the centromeric marker,Xgwm72 (at a distance of 14.2 cM). TheBr 1 locus was located on the short arm of chromosome 3D. The distance ofBr 1 from the centromeric markerXgdm72 was 25.3 cM. Mapping theBr 1 ,Br 2 andBr 3 loci of the brittle rachis suggests the homoeologous origin of these 3 loci for brittle rachides. Since the genes for brittle rachis have been retained in the gene pool of durum wheat, the more closely linked markers with the brittle rachis locus are required to select against brittle rachis genotypes and then to avoid yield loss in improved cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cao WG, Scoles GJ, Hucl P, 1997. The genetics of rachis fragility and glume tenacity in semi-wild wheat. Euphytica 94: 119–124.

    Article  Google Scholar 

  • Chen QF, Yen C, Yang JL, 1998. Chromosome location of the gene for brittle rachis in the Tibetan weedrace of common wheat. Genet Res Crop Evol 45: 407–410.

    Article  Google Scholar 

  • Dvorak J, Appels R, 1982. Chromosomal and nucleotide sequence differentiation in genomes of polyploidyTriticum species. Theor Appl Genet 63: 349–360.

    Article  Google Scholar 

  • Dvorak J, Zhang HB, 1990. Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proc Natl Acad Sci 87: 9640–9644.

    Article  CAS  PubMed  Google Scholar 

  • Friebe BR, Qi LL, Nasuda S, Zhang P, Tuleen NA, Gill BS, 1999a. Development of a complete set ofTriticum aestivum-Aegilops speltoides chromosome addition lines. Theor Appl Genet 101: 51–58.

    Article  Google Scholar 

  • Friebe BR, Tuleen NA, Gill BS, 1999b. Development and identification of a complete set ofTriticum aestivum-Aegilops geniculata chromosome addition lines. Genome 42: 374–380.

    Article  Google Scholar 

  • King IP, Law CN, Cant KA, Orford SE, Reader SM, Miller TE, 1997.Tritipyrum, a potential new salt-tolerant cereal. Plant Breeding 116: 127–132.

    Article  Google Scholar 

  • Luo M-C, Deal KR, Yang Z-L, Dvorak J, 2005. Comparative genetic maps reveal extreme crossover localization inAegilops speltoides chromosomes. Theor Appl Genet 111: 1098–1106.

    Article  CAS  PubMed  Google Scholar 

  • McFadden ES, Sears ER, 1946. The origin ofTriticum spelta and its free-threshing hexaploid relatives. J Hered 37: 81–90, 107–116.

    PubMed  Google Scholar 

  • Miller TE, Reader SM, Mahmood A, Purdie KA, King IP, 1995. Chromosome 3N ofAegilops uniaristata — a source of tolerance to high levels of aluminum for wheat. In: Li ZS, Xin ZY, eds. Proc. 8th Internat. Wheat Genet Symp 1993, China Agricultural Scientech Press, Beijing, China: 1037–1042.

    Google Scholar 

  • Morrison L, 1995. Reinterpretation of dispersal strategies inTriticum L. andAegilops L. In: Wang R-C, Jensen KB, Jaussi C, eds. Proc. 2nd Int Triticeae Symp, Utah State University, Logan, Utah, USA: 203–206.

    Google Scholar 

  • Plaschke J, Ganal MW, Röder MS, 1995. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91: 1001–1007.

    Article  CAS  Google Scholar 

  • Raupp WJ, Friebe B, Gill BS, 1995. Suggested guidelines for the nomenclature and abbreviation of the genetic stocks of wheat,Triticum aestivum L. em Thell., and its relatives. Wheat Inform Serv 81: 50–55.

    Google Scholar 

  • Riley RG, Kimber G, Law CN, 1966. Correspondence between wheat and alien chromosomes. Ann Rep Plant Breeding Inst 1964–65: 108–109.

    Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixer M-H, Leroy PH, Ganal M, 1998. A microsatellite map of wheat. Genetics 149: 2007–2023.

    PubMed  Google Scholar 

  • Sarker P, Stebbins GL, 1956. Morphological evidence concerning the origin of the B genome in wheat. Amer J Bot 43: 297–304.

    Article  Google Scholar 

  • Shao Q, 1980. Semi-wild wheat for Xizang (Tibet). Acta Genet Sin 7: 149–156.

    Google Scholar 

  • Shao Q, 1983. Semi-wild wheat for Xizang (Tibet). In: Sakamoto, ed. Proc. 6th Internat. Wheat Genet Symp, Plant Germplasm Institute, Faculty of Agriculture, Kyoto University, Kyoto, Japan: 111–114.

    Google Scholar 

  • Sharma HC, Waines JG, 1980. Inheritance of tough rachis in crosses ofTriticum monococcum andT. boeoticum. J Hered 71: 214–216.

    Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB, 2005. Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110: 550–560.

    Article  CAS  PubMed  Google Scholar 

  • Talbert LE, Magyer GM, Lavin M, Blake TK, Moylan SL, 1991. Molecular evidence for the origin of the S-derived genomes of polyploidyTriticum species. Amer J Bot 78: 340–349.

    Article  CAS  Google Scholar 

  • Urbano M, Resta P, Benedettelli S, Blanco A, 1988. ADasypyrum villosum (L.) Candargy chromosome related to homoeologous group 3 of wheat. In: Miller TE, Koebner RMD, eds. Proc. 7th Internat. Wheat Genet. Symp., IPSR Cambridge Lab., Cambridge, UK: 169–173.

    Google Scholar 

  • Yang YC, Tuleen NA, Hart GE, 1996. Isolation and identification ofTriticum aestivum L. em. Thell. cv. Chinese Spring —T. peregrium Hackel disomic addition lines. Theor Appl Genet 92: 591–598.

    Article  Google Scholar 

  • Wang G-Z, Miyashita N, Tsunewaki K, 1997. Plasmon analyses ofTriticum (wheat) andAegilops: PCR-single-strand conformational polymorphism (PCR-SSCP) analyses of organellar DNAs. Proc Natl Acad Sci USA 94: 14570–14577.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe N, 1983. Variation of D genomes affecting the morphological characters of common wheat. Japan J Breeding 33: 296–302.

    Google Scholar 

  • Watanabe N, 2005. The occurrence and inheritance of a brittle rachis phenotype in Italian durum wheat cultivars. Euphytica 142: 247–251.

    Article  Google Scholar 

  • Watanabe N, Ikebata N, 2000. The effects of homoeologous group 3 chromosomes on grain colour dependent seed dormancy and brittle rachis in tetraploid wheat. Euphytica 115: 215–220.

    Article  Google Scholar 

  • Watanabe N, Sugiyama K, Yamagishi Y, Sakata Y, 2003. Comparative telosomic mapping of homoeologous genes for brittle rachis in tetraploid and hexaploid wheat. Hereditas 137: 180–185.

    Article  Google Scholar 

  • Watanabe N, Takesada N, Shibata Y, Ban T, 2005. Genetic mapping of the genes for glaucous leaf and tough rachis inAegilops tauschii, the D-genome progenitor of wheat. Euphytica 144: 119–123.

    Article  CAS  Google Scholar 

  • Zohary D, Imber D, 1963. Genetic dimorphism in fruit types inAegilops speltoides. Heredity 18: 225–231.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyoshi Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, N., Fujii, Y., Kato, N. et al. Microsatellite mapping of the genes for brittle rachis on homoeologous group 3 chromosomes in tetraploid and hexaploid wheats. J Appl Genet 47, 93–98 (2006). https://doi.org/10.1007/BF03194606

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03194606

Key words

Navigation