Skip to main content
Log in

Diversity in Allium ampeloprasum: from small and wild to large and cultivated

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Allium ampeloprasum evolved as a complex of different cyto- and morpho-types widely distributed either in the wild or domesticated range of the Mediterranean regions. The assessment of genetic and phylogenetic relationships between Tunisian A. ampeloprasum and specimens from different origins and with variable degree of domestication can promote conservation and breeding. Minisatellite M13, microsatellite (GTG)5 and nucleotide sequence analysis of the internal transcribed spacer region (ITS) were used to assess DNA polymorphism and genetic diversity. M13 and (GTG)5 molecular markers efficiently discriminated A. ampeloprasum gene-pool from A. sativum. Geographic genetic patterns of variation of the wild gene-pool were not detected. However, domesticated A. ampeloprasum (great headed garlic, kurrat and leek) clustered consistently within the ampeloprasum group. A. sativum was found to be closer to A. ampeloprasum than A. fistulosum and A. schoenoprasum. A high number of single point mutations (SNPs) was recorded over the ITS1-2 spacer sequence. Most of these SNPs were heterozygous only in great headed garlic. It is inferred that heterozygosity played the major role in promoting great headed garlic domestication. Thus, great headed garlic adaptation to horticultural conditions along with its yield trait sizes are mainly associated to heterozygosity rather than to polyploidy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Álvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Molec Phylogenet Evol 29:417–434

    Article  PubMed  Google Scholar 

  • Ariga T, Kumagai H, Yoshikawa M, Kawakami H, Seki T, Sakurai H, Hasegawa I, Etoh T, Sumiyoshi H, Tsuneyoshi T, Sumi S, Iwai K (2002) Garlic-like but odorless plant A. ampeloprasum “Mushuu-ninniku”. J Jpn Soc Hort Sci 71:362–369

    Article  CAS  Google Scholar 

  • Astley D, Innes NL, van der Meer JW (1982) Genetic resources of Allium species: a Global Report. IBPGR, Rome 38 pp

    Google Scholar 

  • Avise JC (1994) Molecular markers, natural history and evolution. Chapman & Hall, New York, p 511

    Book  Google Scholar 

  • Baldwin BG (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Molec Phylogenet Evol 1:3–16

    Article  PubMed  CAS  Google Scholar 

  • Baldwin BG, Sanderson MJ, Wojciechowski JM, Campbell CS, Donoghue MJ (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann Missouri Bot Gard 82:247–277

    Article  Google Scholar 

  • Barkman TJ, Simpson BB (2002) Hybrid origin and parentage of Dendrochilum acuiferum (Orchidaceae) inferred in a phylogenetic context using nuclear and plastid DNA sequence data. Syst Bot 27:209–220

    Google Scholar 

  • Bingham ET (1979). Maximizing heterozigosity in autopolyploids. In: Polyploidy: biological relevance. Lewis Plenum, NY and London

  • Blattner FR (1999) Direct amplification of the entire ITS region from poorly preserved plant material using recombinant PCR. Biotechniques 27:1180–1186

    PubMed  CAS  Google Scholar 

  • Bothmer R (1970) Cytological studies in Allium I. Chromosome numbers and morphology in Allium Sect. Allium from Greece. Bot Notiser 123:267–288

    Google Scholar 

  • Brewster JL (1995) Onions and Other Vegetable Alliums. In: Fordham R (ed) Scientia Horticulturae 62 (1–2): 145–146. Wallingford, U.K

    Google Scholar 

  • Buscot F, Wipp D, Di Battista C, Munch JC, Botton B, Martin F (1996) DNA polymorphism in morels: PCR/RFLP analysis of the ribosomal DNA spacer and microsatellite-primed PCR. Mycol Res 100:63–71

    Article  CAS  Google Scholar 

  • De Clercq H, Peusens D, Roldàn-Ruiz I, van Bockstaele E (2003) Causal relationships between inbreeding, seed characteristics and plant performance in leek (Allium porrum L.). Euphytica 134:103–115

    Article  Google Scholar 

  • De Vuyst L, Camu N, De Winter T, Vandemeulebroecke K, Van de Perre V, Vancanneyt M, De Vos P, Cleenwerck I (2007) Validation of the (GTG)5 rep-PCR fingerprinting technique for rapid classification and identification of acetic bacteria, with a focus on isolates from Ghanaian fermented cocoa beans. Int J Food Microbiol 125(1):79–90

    Article  PubMed  Google Scholar 

  • Di Conza JA, Nepote AF, Conzáles AM, Lurá MC (2007) (GTG)5 microsatellite regions in citrinin-producing Penicillium. Rev Iberoam Micol 24:34–37

    Article  PubMed  Google Scholar 

  • Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS (1991) Touchdown PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19:4008

    Article  PubMed  CAS  Google Scholar 

  • Dubouzet JG, Shinoda K (1998) Phylogeny of Allium L. subgenus Melanocrommyum (Webb. et Berth.) Rouy. Based on DNA sequence analysis of the internal transcribed spacer region nrDNA. Theor Appl Genet 97:541–549

    Article  CAS  Google Scholar 

  • Dubouzet JG, Shinoda K (1999) Relationships among old and new Alliums according to ITS DNA sequence analysis. Theor Appl Genet 98:422–433

    Article  CAS  Google Scholar 

  • Eck RV, Dayhoff MO (1966) Atlas of Protein Sequence and Structure. National Biomedical Research Foundation, Silver Springs, MD

    Google Scholar 

  • Emberger L (1966). A biogeographical classification of climates. Research and work of laboratory of geology, botany and zoology. Faculty of Science Montpellier France 7 (Eds)

  • Engelke T, Agbicodo E, Tatlioglu T (2004) Mitochondrial genome variation in Allium ampeloprasum and its wild relatives. Euphytica 137:181–191

    Article  CAS  Google Scholar 

  • Etoh T, Sakai Y, Johjima T (1992) Peroxidase isozymes in various cultivars of leek and kurrat. Mem Fac Agr Kagoshima Univ 28:75–82

    CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Figliuolo G, Di Stefano D (2007) Is single bulb garlic Allium sativum or Allium ampeloprasum? Sci Hortic 114:243–249

    Article  CAS  Google Scholar 

  • Figliuolo G, Mang S (2010) Characterization and discrimination of Mediterranean bulb-producing garlic. In: Pacurar M, Krejci G (eds) Garlic Consumption and Health. Nova Science Publishers, Inc., New York, pp 181–197

    Google Scholar 

  • Figliuolo G, Candido V, Logozzo G, Miccolis V, Spagnoletti ZPL (2001) Genetic evaluation of cultivated garlic germplasm (Allium sativum L. and A. ampeloprasum L.). Euphytica 121:325–334

  • Fischer D, Bachmann K (2000) Onion microsatellites for germplasm analysis and their use in assessing intra- and interspecific relatedness within the subgenus Rhizirideum. Theor Appl Genet 101:153–164

    Article  CAS  Google Scholar 

  • Friesen N, Fritsch R, Blattner FR (2006) Phylogeny and new intrageneric classification of Allium (Alliaceae) based on nuclear ribosomal DNA ITS sequences. Aliso 22:372–395

    Google Scholar 

  • Fritsch R, Friesen N (2002) Evolution, domestication and taxonomy. In: Rabinowich HD, Currah L (eds) Allium Crop Science: Recent Advances. CABI Publishing, Wallingford, pp 5–30

    Chapter  Google Scholar 

  • Gantait S, Mandal N, Das PK (2010) Field evaluation of micropropagated versus conventionally propagated elephant garlic. J Agric Technol 7(1):97–103

    Google Scholar 

  • Guern M, Lecorff J, Boscher J (1991) Comparative karyology of the Allium ampeloprasum complex in France. Buletin de la Societè Botanique de France-Lettres Botaniques 138:303–313

    Google Scholar 

  • Gurushidze M, Mashayekhi S, Blattner FR, Friesen N, Fritsch RM (2007) Phylogenetic relationships of wild and cultivated species of Allium section Cepa inferred by nuclear rDNA ITS sequence analysis. Pl Syst Evol 269:259–269

    Google Scholar 

  • Hanelt P (1990) Taxonomy, evolution, and history. In: Rabinowich HD, Brewster JL (eds) Onions and Allied Crops. I. CRC Press, Boca Raton, pp 1–26

    Google Scholar 

  • Hanelt P. and Institute of Plant Genetics and Crop Plant Research (eds) (2001) Alliaceae. Mansfeld’s encyclopedia of agricultural and horticultural crops, vol 4, pp 2250–2269

  • Hanelt P, Schultze-Motel J, Fritsch R, Kruse J, Maas HI, Ohle H, Pistrick K (1992) Infragenereric Grouping of Allium – The Gatersleben approach. In: Hanelt P, Hammer K, Knüpffer H (eds) The Genus Allium – Taxonomic Problems and Genetic Resources. IPK, Gatersleben, pp 107–123

  • Hassan AA (1989) Practical and Scientific Series in Agricultural Crops: Secondary Vegetables. Arabic House Publishing Inc, Cairo

    Google Scholar 

  • Havey MJ (1991) Phylogenetic relationships among cultivated Allium species from restriction enzyme analysis of the chloroplast genome. Theor Appl Genet 81:752–757

    Google Scholar 

  • Hirschegger P, Galmarini C, Bohanec B (2006) Characterization of a novel form of fertile great headed garlic (Allium sp.). Plant Breed 125:635–637

    Article  Google Scholar 

  • Hirschegger P, Jakse J, Trontelj P, Bohanec B (2010) Origins of Allium ampeloprasum horticultural groups and a molecular phylogeny of the section Allium (Allium: Alliaceae). Molec Phylogenet Evol 54(2):488–497

    Article  PubMed  CAS  Google Scholar 

  • Hortal S, Pera J, Galipienso L, Parladè J (2006) Molecular identification of the edible ectomycorrhizal fungus Lactarius deliciosus in the symbiotic and extraradical mycelium stages. J Biotechnol 126(2):126–134

    Article  Google Scholar 

  • Jones HA, Mann LK (1963) Onions and their allies. Leonard Hill Books, London

    Google Scholar 

  • Kadry AER, Kamel SA (1955) Cytological studies in the two tetraploid species of Allium kurrat Schweinf. and Allium porrum L. and their hybrid. Sven Bot Tidskr 49:314–324

    Google Scholar 

  • Khazendari KA, Jones GH (1997) The causes and consequences of meiotic irregularity in the leek (Allium ampeloprasum spp. porrum); implications for fertility, quality and uniformity. Euphytica 93:313–319

    Article  Google Scholar 

  • Kik C, Samoylov AM, Verbeek WHJ, van Raamsdonk LWD (1997) Mitochondrial DNA variation and crossability of leek (Allium porrum) and its wild relatives from the Allium ampeloprasum complex. Theor Appl Genet 94:465–471

    Article  CAS  Google Scholar 

  • Klaas M (1998) Applications and impact of molecular markers on evolutionary and diversity studies in the genus Allium. Plant Breed 117(4):297–308

    Article  CAS  Google Scholar 

  • Lampasona GS, Martinez L, Burba JL (2003) Genetic diversity among selected Argentinean garlic clones (Allium sativum L.) using AFLP (amplified fragment length polymorphism). Euphytica 132:115–119

    Article  Google Scholar 

  • Latouche GN, Daniel HM, Lee OC, Mitchell TG, Sorrel TC, Meyer W (1997) Comparison of use of phenotypic and genotypic characteristics for identification of species of the anamorph genus Candida and related teleomorph yeast species. J Clin Microbiol 35(12):3171–3180

    PubMed  CAS  Google Scholar 

  • Lee GA, Kwon SJ, Park YJ, Lee MC, Kim HH, Lee JS, Lee SY, Gwag JG, Kim CK, Ma KH (2011) Cross-amplification of SSR markers developed from Allium sativum to other Allium species. Sci Hortic 128(4):401–407

    Article  CAS  Google Scholar 

  • Levan A (1941) The cytology of the species hybrid Allium cepa x fistulosum and its polyploid derivatives. Hereditas 25:253–272

  • Li QQ, Zhou SD, He XJ, Yu Y, Zhang YC, Wei XQ (2010) Phylogeny and biogeography of Allium (Amaryllidaceae: Allieae) based on nuclear ribosomal internal transcribed spacer and chloroplast rps16 sequences, focusing on the inclusion of species endemic to China. Ann Bot 106(5):709–733

    Article  PubMed  CAS  Google Scholar 

  • Longato S, Bonfante P (1997) Molecular identification of mycorrhizal fungi by direct amplification of microsatellite regions. Mycol Res 101(4):425–432

    Article  CAS  Google Scholar 

  • Maaß HI, Klaas M (1995) Infraspecific differentiation of garlic (Allium sativum L.) by isozyme and RAPD markers. Theor Appl Genet 91:89–97

    Article  Google Scholar 

  • Mathew B (1996) A review of Allium section Allium. Royal Bot. Gard, Kew 176 pp

    Google Scholar 

  • McCollum GD (1987) Onion and allies. In: Simmonds NW (ed) Evolution of Crop Plants. Longman, England, pp 186–190

    Google Scholar 

  • Mes THM, Fritsch RM, Pollner S, Bachmann K (1999) Evolution of the chloroplast genome and polymorphic ITS regions in Allium subgenus Melanocrommyum. Genome 42:237–247

    PubMed  CAS  Google Scholar 

  • Meyer W, Latouche GN, Daniel HM, Thanos M, Mitchell GT, Yarrow D, Schönian G, Sorell TC (1997) Identification of pathogenic yeasts of the imperfect genus Candida by polymerase chain reaction fingerprinting. Electrophoresis 18:1548–1559

    Article  PubMed  CAS  Google Scholar 

  • Mohamed-Yasseen Y, Splittstoesser WE, Litz RE (1994) In vitro shoot proliferation and production of sets from garlic and shallot. Plant Cell, Tissue Organ Cult 36:243–247

    Article  Google Scholar 

  • Mohamed-Yasseen Y, Barringer SA, Splittstoesser WE (1995) In vitro shoot proliferation and plant regeneration from kurrat (Allium ampeloprasum var. kurrat) seedlings. Plant Cell Tissue Organ Cult 40:195–196

    Article  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Peterka H, Budahn H, Schrader O (2005) Interspecific hybridization for Leek (Allium ampeloprasum) improvement. Acta Hortic 688:101–108

    Google Scholar 

  • Petreka H, Budahn H, Schrader O, Havey MJ (2002) Transfer of male-sterility-inducing cytoplasm from onion to leek (Allium ampeloprasum). Theor Appl Genet 105:173–181

    Article  Google Scholar 

  • Pomarico M, Figliuolo G, Rana GL (2007) Tuber spp biodiversity in one of the Southernmost distribution areas. Biodivers Conserv 16:3447–3461

    Article  Google Scholar 

  • Rabinowitch HD (1997) Breeding alliaceous for pest resistance. Acta Hort 433:223–246

    Google Scholar 

  • Ranade SA, Farooqui N (2002) Assessment of profile variations amongst provenances of neem using single-primer-amplification reaction (SPAR) techniques. Mol Biol Today 3(1):1–10

    CAS  Google Scholar 

  • Rani V, Raina SN (1998) Genetic analysis of enhanced-axilary-branching-revived Eucalyptus tereticornis Smith and E. camaldulensis Dehn. Plants. Plant Cell Rep 17:236–242

  • Ricroch A, Yockteng R, Brown SC, Nadot S (2005) Evolution of genome size across some cultivated Allium species. Genome 48:511–520

    Article  PubMed  CAS  Google Scholar 

  • Ryberg A, Olsson C, Ahrné S, Monstein HJ (2011) Comparison of (GTG)5-oligonucleotide and ribosomal intergenic transcribed spacer (ITS)-PCR for molecular typing of Klebsiella isolates. J Microbiol Methods 84(2):183–188

    Article  PubMed  CAS  Google Scholar 

  • Ryskov AP, Jincharadze AG, Prosnyak MI, Ivanov PL, Limborska SA (1988) M13 phage DNA as universal marker for DNA fingerprinting of animals, plants and microorganisms. FEBS Lett 233(2):388–392

    Article  PubMed  CAS  Google Scholar 

  • Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 9:945–967

    CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular Cloning: A Laboratory Manual, vol 2, 3rd edn. Cold Spring Harbor, NY

    Google Scholar 

  • Smith BM, Crowther TC (1995) Inbreeding depression and single cross hybrids in leeks (Allium ampeloprasum ssp. porrum). Euphytica 86:87–94

    Article  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical Taxonomy. Freeman, San Francisco

    Google Scholar 

  • Soltis PS, Soltis DE (1991) Multiple origins of the allotetraploid Tragopon mirus (Compositae): rDNA evidence. Syst Bot 16:407–413

    Article  Google Scholar 

  • Soltis PS, Plunkett GM, Novak SJ, Soltis DE (1995) Genetic variation in Tragopon species: additional origins of the allotetraploids T. mirus and T. miscellus (Compositae). Am J Bot 82:1329–1341

    Article  Google Scholar 

  • Stewart P (1968) Quotient pluviométrique et dégradation biosphérique. Bull Doc Hist Nat Afrique du Nord. Alger 59(1–4):23–36

    Google Scholar 

  • Svec P, Vancanneyt M, Seman M, Snauwaert C, Lefebvre K, Sedlácek I, Swings J (2005) Evaluation of (GTG)5-PCR for identification of Enterococcus spp. FEMS Microbiol Lett 247(1):59–63

    Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol (submitted)

  • Ved Brat S (1965) Genetic system in Allium species I. Chromosome variation. Chromosoma 16:486–499

    Article  Google Scholar 

  • Walczak E, Czaplinska A, Barszczewski W, Wilgosz M, Wojtatowicz M, Robak M (2007) RAPD with microsatellite as a tool for differentiation of Candida genus yeasts isolated in brewing. Food Microbiol 24:305–312

    Article  PubMed  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols. Academic Press, NY, A Guide to Methods and Applications, pp 315–322

    Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acid Res 18:6531–6535

    Article  CAS  Google Scholar 

  • Zhao WG, Chung JW, Lee GA, Ma KH, Kim HH, Kim KT, Chung IM, Lee JK, Kim NS, Kim SM, Park YJ (2011) Molecular genetic diversity and population structure of a selected core set of garlic and its relatives using novel SSR markers. Plant Breed 130:46–54

    Article  CAS  Google Scholar 

  • Zimmerman PA, Lang-Unnasch N, Cullis CA (1989) Polymorphic regions in plant genomes detected by an M13 probe. Genome 32:824–828

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Part of this work has been supported by a Fellowship from the Ministry of Higher Education and Scientific Research of Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Figliuolo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guenaoui, C., Mang, S., Figliuolo, G. et al. Diversity in Allium ampeloprasum: from small and wild to large and cultivated. Genet Resour Crop Evol 60, 97–114 (2013). https://doi.org/10.1007/s10722-012-9819-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-012-9819-5

Keywords

Navigation