Skip to main content
Log in

Analysis of the contribution of Mesoamerican and Andean gene pools to European common bean (Phaseolus vulgaris L.) germplasm and strategies to establish a core collection

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Common bean (Phaseolus vulgaris L.) was introduced in Europe from both Mesoamerican and Andean centres of origin. In this study, a collection including 544 accessions from all European regions showed that the Andean phaseolin types ‘T’ (45.6%) and ‘C’ (30.7%) prevailed over the Mesoamerican ones ‘S’ (23.7%), and accessions with cuboid seed shape (34.9%), maroon coat darker colour seed (44.3%), uniform seed colour (69.6%) were the most frequent. European accessions with phaseolin ‘S’ showed a significantly larger average seed size compared to those from America in the same phaseolin class while those presenting ‘T’ and ‘C’ phaseolin did not. This suggests that, during crop expansion in Europe, sampling or selection favoured the large-seeded races within the Mesoamerican ‘S’ gene pool or, possibly, introgression from Andean germplasm did occur. A core collection was developed using sampling approaches based on the information available in the genebank databases and on phaseolin patterns. Four sampling strategies were used: simple random sampling, and three random-stratified samplings, by logarithm of frequency of accessions by country, by European region, and by phaseolin pattern, respectively. Two sampling strategies resulted in core collections significantly different for phaseolin electrophoretic patterns from the whole collection. Stratification by phaseolin patterns increased the frequency of ‘S’ types (‘C’ type = 33%, ‘T’ type = 5.7% and ‘S’ type = 31.3%). The core collections were validated using seven seed characters, and no significant difference was observed in all strategies. This first developed European bean core collection will help to assess the contribution of the two American gene pools to the European germplasm and their relative importance for breeding purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amalraj VA, Balakrishnan R, Jebadhas AW, Balasundaram N (2006) Constituting a core collection of Saccharum spontaneum L. and comparison of three stratified random sampling procedures. Genet Resour Crop Evol (in press) DOI 10.1007/s10722-005-8510-5

  • Bataillon TM, David JL, Schoen J (1996) Neutral genetic markers and conservation genetics: simulated germplasm collections. Genetics 144:409–417

    PubMed  CAS  Google Scholar 

  • Bisht IS, Mahajan RK, Patel DP (1998) The use of characterisation data to establish the Indian mungbean core collection and assessment of genetic diversity. Genet Resour Crop Evol 45:127–133

    Article  Google Scholar 

  • Brown AHD (1989a) The case of core collections. In: Brown AHD, Frankel OH, Marshall DR, Williams JT (eds) The use of plant genetic resources. Cambridge University Press, Cambridge, UK, pp 135–156

    Google Scholar 

  • Brown AHD (1989b) Core collections: a practical approach to genetic resources management. Genome 31:818–824

    Google Scholar 

  • Chandra S, Huaman Z, Hari-Krishna S, Ortiz R (2002) Optimal sampling strategy and core collection size of Andean tetraploid potato based on isozyme data–a simulation study. Theor Appl Genet 104:1325–1334

    Article  PubMed  CAS  Google Scholar 

  • Charmet G, Balfourier F (1995) The use of geostatistics for sampling a core collection of perennial ryegrass populations. Genet Resour Crop Evol 42:303–309

    Article  Google Scholar 

  • Crossa J, DeLacy IH, Taba S (1995) The use of multivariate methods in developing a core collection. In: Hodgkin T, Brown AHD, Hintum van TJL, Morales EAV (eds) Core collections of plant genetic resources. John Wiley & Sons, West Sussex, England, pp 77–91

    Google Scholar 

  • Delgado-Salinas A, Bonet A, Gepts P (1988) The wild relative of Phaseolus vulgaris in Middle America. In: Gepts P (ed) Genetic resources of Phaseolus beans. Kluwer Academic Publisher, Dordrecht, Holland, pp 163–184

    Google Scholar 

  • Diwan N, Bauchan GR, McIntosh MS (1994) A core collection for the United States annual Medicago germplasm collection. Crop Sci 34:279–285

    Article  Google Scholar 

  • Diwan N, McIntosh MS, Bauchan GR (1995) Methods of developing a core collection of annual Medicago species. Theor Appl Genet 90:755–761

    Article  Google Scholar 

  • Erskine W, Muehlbauer FJ (1991) Allozyme and morphological variability, outcrossing rate and core collection formation in lentil germplasm. Theor Appl Genet 83:119–125

    Article  CAS  Google Scholar 

  • Escribano MR, Santalla M, Casquero PA, de Ron AM (1998) Patterns of genetic diversity in landraces of common bean (Phaseolus vulgaris L.) from Galicia. Plant Breeding 117:49–56

    Article  Google Scholar 

  • Evans AM (1976) Beans. In: Simmonds NW (ed) Evolution of crop plants. Longman, London, UK, pp 168–172

    Google Scholar 

  • Franco J, Crossa J, Taba S, Shands H (2005) A sampling strategy for conserving genetic diversity when forming core subsets. Crop Sci 45:1035–1044

    Article  Google Scholar 

  • Frankel OH, Brown AHD (1984) Plant genetic resources today: a critical appraisal. In: Holden JHW, Williams JT (eds). Crop genetic resources: conservation and evaluation. G. Allen and Unwin, London, UK, pp 249–257

    Google Scholar 

  • Gepts P (1988) Phaseolin as an evolutionary marker. In: Gepts P (eds) Genetic resources of Phaseolus beans. Kluwer Academic Publisher, Dordrecht, Holland, pp 215–241

    Google Scholar 

  • Gepts P, Bliss FA (1988) Dissemination pathways of common bean (Phaseolus vulgaris; Fabaceae) deduced from phaseolin electrophoretic variability. II Europe and Africa. Econ Bot 42(1):86–104

    Google Scholar 

  • Gepts P, Debouck DG (1991) Origin, domestication, and evolution of the common bean, Phaseolus vulgaris. In: Voysest O, van Schoonhoven A (ed) Common beans: research for crop improvement. CAB, Oxon, UK, pp 7–53

    Google Scholar 

  • Gepts P, Kmiecik K, Pereira P, Bliss FA (1988) Dissemination pathways of common bean (Phaseolus vulgaris; Fabaceae) deduced from phaseolin electrophoretic variability. I The Americas. Econ Bot 42(1):73–85

    Google Scholar 

  • Gepts P, Llaca V, Nodari RO, Panella L (1992) Analysis of seed proteins, isozymes, and RFLPs for genetic and evolutionary studies in Phaseolus. In: Linskens H-F, Jackson JF (eds) Modern methods of plant analysis (New series): seed analysis. Springer, Berlin, pp 63–93

    Google Scholar 

  • Gepts P, Osborne TC, Rashka K, Bliss FA (1986) Phaseolin protein variability in wild forms and landraces of the common bean (Phaseolus vulgaris L.): Evidence for multiple centers of domestication. Econ Bot 40:451–468

    CAS  Google Scholar 

  • Grenier C, Hamon P, Bramel-Cox PJ (2001) Core collection of Sorghum: II Comparison of three random sampling strategies. Crop Sci 41:241–246

    Article  Google Scholar 

  • Hammer K (1992) Neu- und altweltliche Bohnen. Vortr Pflanzenzücht 22:162–165

    Google Scholar 

  • IBPGR (1982) Descriptors of Phaseolus vulgaris. IBPGR Secretariat, International Board for Plant Genetic Resources, Rome, Italy

  • Knüpffer H (2002) Splitting morphologically variable accessions to prevent loss of rare alleles. In: Sackville Hamilton NR, Engels JMM, van Hintum TJL, Boo K, Smale M (eds) Accession management. Combining or splitting accessions as a tool to improved germplasm management efficiency. IPGRI Technical Bulletin 5. International Plant Genetic Resources Institute, Rome, p 48

    Google Scholar 

  • Knüpffer H, van Hintum TJL (1995) The Barley Core Collection: an international effort. In: Hodgkin T, Brown AHD, Hintum van TJL, Morales EAV (eds) Core collections of plant genetic resources. John Wiley & Sons, West Sussex, England, pp 171–178

    Google Scholar 

  • Knüpffer H, van Hintum T (2003) Summarised diversity–the Barley Core Collection. In: von Bothmer R, van Hintum T, Knüpffer H, Sato K (eds) Diversity in barley (Hordeum vulgare). Developments in plant genetics and breeding, 7. Elsevier Science B.V., Amsterdam, The Netherlands, pp 259–267

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Shi Y, Cao Y, Wang T (2005) Establishment of a core collection for maize germplasm preserved in Chinese National Genebank using geographic distribution and characterization data. Genet Resour Crop Evol 51:845–852

    Article  Google Scholar 

  • Li Z, Zhang H, Zeng Y, Yang Z, Shen S (2002) Studies on sampling schemes for the establishment of a core collection of rice landraces in Yunnan, China. Genet Resour Crop Evol 49:67–74

    Article  CAS  Google Scholar 

  • Liu F, Sun G, Salomon B, von Bothmer R (2002) Characterization of genetic diversity in core collection accessions of wild barley, Hordeum vulgare ssp. spontaneum. Hereditas 136:67–73

    Article  Google Scholar 

  • Masi P (2001) Analysis of the genetic structure of Phaseolus vulgaris L. landraces in Basilicata, Italy. PhD dissertation, Università degli Studi della Basilicata, Potenza, Italy

  • Masi P, Figliuolo G, Spagnoletti Zeuli PL (1999) Landraces of common bean (Phaseolus vulgaris L.) collected in Basilicata, Italy. Plant Genet Res Newslett 119:51–55

    Google Scholar 

  • McKhann HI, Camilleri C, Berard A, Bataillon T, David JL, Reboud X, Le Corre V, Calustian C, Gut IG, Brunel D (2004) Nested core collections maximizing genetic diversity in Arabidopsis thaliana. Plant J 38:193–202

    Article  PubMed  CAS  Google Scholar 

  • Miklas PN, Delorme R, Hannan R, Dickson MH (1999) Using a subsample of the core collection to identify new sources of resistance to white mold in common bean. Crop Sci 39:569–573

    Article  Google Scholar 

  • Ortwin-Sauver C (1966) The early Spanish man. University of California Press, Berkeley and Los Angeles, pp 51–298

    Google Scholar 

  • Papa R, Nanni L, Sicard D, Rau D, Attene G (2005) The evolution of genetic diversity in Phaseolus vulgaris L. In: Motley TJ, Zerega N, Cross H (eds) Darwin’s Harvest: new approaches to the origins, evolution, and conservation of crop. Columbia University Press, New York, USA, pp 121–142

    Google Scholar 

  • Reddy LJ, Upadhyaya HD, Gowda CLL, Singh S (2005) Development of core collection in pigeonpea [Cajanus cajan (L.) Millspaugh] using geographic and qualitative morphological descriptors. Genet Resour Crop Evol 52:1049–1056

    Article  Google Scholar 

  • Rodiño A, Santalla PM, de Ron AM, Singh SP (2003) A core collection of common bean from the Iberian Peninsula. Euphytica 131:165–175

    Article  Google Scholar 

  • Romero J, Sun SM, McLeester RC, Bliss FA, Hall TC (1975) Heritable variation in a polypeptide subunit of the major storage protein of the bean, Phaseolus vulgaris L. Plant Physiol 56:776–779

    Article  PubMed  CAS  Google Scholar 

  • Santalla M, Menéndez Sevillano MC, Monteagudo AB, de Ron AM (2004) Genetic diversity of Argentinean common bean and its evolution during domestication. Euphytica 135:75–87

    Article  CAS  Google Scholar 

  • Santalla M, Rodiño A, de Ron AM (2002) Allozyme evidence supporting southwestern Europe as a secondary center of genetic diversity for common bean. Theor Appl Genet 104:934–944

    Article  PubMed  CAS  Google Scholar 

  • Schoen DJ, Brown AHD 1993 Conservation of allelic richness in wild crop relatives is aided by assessment of genetic markers. Proc Natl Acad Sci USA 90:1062310627

    Article  Google Scholar 

  • Sicard D, Nanni L, Porfiri O, Bulfon D, Papa R (2005) Genetic diversity of Phaseolus vulgaris L. and P. coccineus L. landraces in central Italy. Plant Breeding 124(5):464–473

    Article  CAS  Google Scholar 

  • Singh SP (2001) Broadening the genetic base of common bean cultivars: A review. Crop Sci 41:1659–1675

    Article  Google Scholar 

  • Singh SP, Gepts P, Debouck DG (1991) Races of common bean (Phaseolus vulgaris, Fabaceae). Econ Bot 45:379–396

    Google Scholar 

  • Skroch PW, Nienhuis J, Beebe S, Tohme J, Pedranza F (1998) Comparison of Mexican common bean (Phaseolus vulgaris L.) core and reserve collections. Crop Sci 38:488–496

    Article  Google Scholar 

  • Spagnoletti Zeuli PL, Qualset CQ (1993) Evaluation of five strategies for obtaining a core subset from a large genetic resources collection of durum wheat. Theor Appl Genet 87:295–304

    Article  Google Scholar 

  • Sun SM, Hall TC (1975) Solubility characteristics of globulins from Phaseolus seeds in regard to their isolation and characterization. J Agric Food Chem 23:184–189

    Article  PubMed  CAS  Google Scholar 

  • Tohme J, Gonzalez DO, Beebe S, Duque MC (1996) AFLP analysis of gene pools of a wild bean core collection. Crop Sci 36:1375–1384

    Article  CAS  Google Scholar 

  • Tohme J, Jones P, Beebe S, Iwanaga M (1995) The combined use of agroecological and characterization data to establish the CIAT Phaseolus vulgaris core collection. In: Hodgkin T, Brown AHD, Hintum van TJL, Morales EAV (eds) Core collections of plant genetic resources. John Wiley & Sons, West Sussex, England, pp 95–107

    Google Scholar 

  • Upadhyaya HD, Ortiz R (2001) A mini core subset for capturing diversity and promoting utilization of chickpea genetic resources in crop improvement. Theor Appl Genet 102:1292–1298

    Google Scholar 

  • van Hintum TJL, Brown AHD, Spillane C, Hodgkin T (2000) Core collections of plant genetic resources. IPGRI Technical Bulletin 3. International Plant Genetic Resources Institute, Rome, Italy

  • van Hintum TJL, Haalman D (1994) Pedigree analysis for composing a core collection of modern cultivars with examples from barley (Hordeum vulgaris s. lat.). Theor Appl Genet 88:70–74

    Article  Google Scholar 

  • Xu H, Mei Y, Hu J, Zhu J, Gong P (2006) Sampling a core collection of island cotton (Gossypium barbadense L.) based on the genotypic values of fiber traits. Genet Resour Crop Evol 53:515–521

    Article  Google Scholar 

  • Yonezawa K, Nomura T, Morishima H (1995) Sampling strategies for use in stratified germplasm collections. In: Hodgkin T, Brown AHD, Hintum van TJL, Morales EAV (eds) Core collections of plant genetic resources. John Wiley & Sons, Chichester, UK, pp 35–53

    Google Scholar 

  • Zeven AC (1997) The introduction of common bean (Phaseolus vulgaris L.) into Western Europe and the phenotypic variation of dry beans collected in the Netherlands in 1946. Euphytica 94:319–328

    Article  Google Scholar 

  • Zeven AC, Waninge J, van Hintum TJL, Singh SP (1999) Phenotypic variation in a core collection of common bean (Phaseolus vulgaris L.) in the Netherlands. Euphytica 109:93–106

    Article  Google Scholar 

  • Zewdie Y, Tong N, Bosland P (2004) Establishing a core collection of Capsicum using a cluster analysis with enlightened selection of accessions. Genet Resour Crop Evol 51:147–151

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Stefano Benedettelli and Nadia Lacerenza, Università di Firenze, for their advice on phaseolin electrophoresis; Patrizia Masi and Mariantonia Diluca for support at various stages of this research. The Research was supported by a M.I.U.R. project (Beans in Europe: Structure of Genetic Diversity in Common Bean (Phaseolus vulgaris L.) for AFLPs) from the Italian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppina Logozzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Logozzo, G., Donnoli, R., Macaluso, L. et al. Analysis of the contribution of Mesoamerican and Andean gene pools to European common bean (Phaseolus vulgaris L.) germplasm and strategies to establish a core collection. Genet Resour Crop Evol 54, 1763–1779 (2007). https://doi.org/10.1007/s10722-006-9185-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-006-9185-2

Keywords

Navigation