Skip to main content
Log in

The interaction of folate-modified Bletilla striata polysaccharide-based micelle with bovine serum albumin

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

We fabricated an amphiphilic folate-modified Bletilla striata polysaccharide (FA-BSP-SA) copolymer that exhibited good biocompatibility and superior antitumor effects. This study investigated the affinity between FA-BSP-SA and bovine serum albumin (BSA) via multispetroscopic approaches. Changes in the morphology and particle size showed that FA-BSP-SA formed a blurry “protein corona”. Stern–Volmer equation demonstrated that FA-BSP-SA micelles decreased the fluorescence of BSA via static quenching. The measurement results of thermodynamic parameters (entropy change, enthalpy change, and Gibbs free energy) suggested that the binding between FA-BSP-SA and BSA was spontaneous in which Van der Waals forces and hydrogen bonding played major roles. The results from synchronous fluorescence, circular dichroism, and UV spectra also revealed that BSA conformation was slightly altered by decreasing α-helical contents. In addition, the antitumor effects in vitro of Dox@FA-BSP-SA micelles and the cellular uptake behavior of micelles in 4T1 cells were decreased after incubating with BSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Chen, Z.Y., Cheng, L.Z., He, Y.C., Wei, X.L.: Extraction, characterization, utilization as wound dressing and drug delivery of Bletilla striata polysaccharide: A review. Int. J. Biol. Macromol. 120, 2076–2085 (2018)

    Article  CAS  PubMed  Google Scholar 

  2. He, X.R., Wang, X.X., Fang, J.C., Zhao, Z.F., Huang, L.H., Zheng, X.H.: Bletilla striata: Medicinal uses, phytochemistry and pharmacological activities. J. Ethnopharmacol. 195, 20–38 (2017)

    Article  CAS  PubMed  Google Scholar 

  3. Xu, D.L., Pan, Y.C., Chen, J.S.: Chemical constituents pharmacologic properties and clinical applications of Bletilla striata. Front. Pharmacol. 10, 1168 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yu, T., Huang, X., Liu, J.G., Fu, Q.Y., Wang, B.L., Qian, Z.Y.: Polymeric nanoparticles encapsulating α-mangostin inhibit the growth and metastasis in colorectal cancer. Appl. Mater. Today. 16, 351–366 (2019)

    Article  Google Scholar 

  5. Zuo, G.H., Kang, S.G., Xiu, P., Zhao, Y.L., Zhou, R.H.: Interactions between proteins and carbon-based nanoparticles: exploring the origin of nanotoxicity at the molecular level. Small 9, 1546–1556 (2013)

    Article  CAS  PubMed  Google Scholar 

  6. Qu, Y., Chu, B.Y., Wei, X.W., Lei, M.Y., Hu, D.R., Zha, R.Y., Zhong, L., Wang, M.Y., Wang, F.F., Qian, Z.Y.: Redox/pH dual-stimuli responsive camptothecin prodrug nanogels for “on-demand” drug delivery. J. Controlled Release. 296, 93–106 (2019)

    Article  CAS  Google Scholar 

  7. Cruz, C.A.J., Kang, S.G., Zhou, R.: Large scale molecular simulations of nanotoxicity. Wiley Interdiscip. Rev.: Syst. Biol. Med. 6, 344 (2014).

  8. Wu, H., Jiang, S.L., Li, W.Y., Chen, M.M., Shang, M.T., Li, X., Mu, K., Fan, S.H.: Insights into the binding behavior of bovine serum albumin to black carbon nanoparticles and induced cytotoxicity. Spectrochim. Acta, Part A 200, 51–57 (2018)

    Article  CAS  Google Scholar 

  9. Laurent, S., Ng, E.P., Thirifays, C., Lakiss, L., Goupil, G. M., Mintova, S., Burtea, C., Oveisi, E., Hébert, C., Vries, M.d., Motazacker, M.M., Rezae, F., Mahmoudi, M.: Corona protein composition and cytotoxicity evaluation of ultra-small zeolites synthesized from template free precursor suspensions. Toxicol. Res. 2, 270 (2013).

  10. Lacerda, S.H.D.P., Park, J.J., Meuse, C., Pristinski, D., Becker, M.L., Karim, A., Douglas, J.F.: Interaction of Gold Nanoparticles with Common Human Blood Proteins. ACS Nano 4, 365–379 (2010)

    Article  PubMed  CAS  Google Scholar 

  11. Monopoli, M.P., Walczyk, D., Campbell, A., Elia, G., Lynch, I., Bombell, F.B., Dawson, K.A.: Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 133, 2525–2534 (2011)

    Article  CAS  PubMed  Google Scholar 

  12. Wu, H., Zhao, X.J., Wang, P., Dai, Z., Zou, X.Y.: Electrochemical site marker competitive method for probing the binding site and binding mode between bovine serum albumin and alizarin red S. Electrochim. Acta. 56, 4181–4187 (2011)

    Article  CAS  Google Scholar 

  13. Chakraborty, T., Chakraborty, I., Moulik, S.P., Ghosh, S.: Physicochemical and Conformational Studies on BSA-Surfactant Interaction in Aqueous Medium. Langmuir 25, 3062–3074 (2009)

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, G.Y., Wu, J., Liu, Y.R., Huang, L., Qiao, J., Liu, X., Wei, J.Y., Guan, Q.X.: Effects of degree of substitution on stearic acid-modified Bletilla striata polysaccharides nanoparticles and interactions between nanoparticles and bovine serum albumin. Chin. Chem. Lett. 29, 1861–1864 (2018)

    Article  CAS  Google Scholar 

  15. Zhang, Y., Li, J.H., Ge, Y.S., Liu, X.R., Jiang, F.L., Liu, Y.: Biophysical studies on the interactions of a classic mitochondrial uncoupler with bovine serum albumin by spectroscopic, isothermal titration calorimetric and molecular modeling methods. J. Fluoresc. 21, 475–485 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. Majorek, K.A., Porebski, P.J., Dayal, A., Zimmerman, M.D., Jablonska, K., Stewart, A.J., Chruszcz, M., Minor, W.: Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Mol. Immunol. 52, 174–182 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, Y.Q., Wang, Y., Luo, Q., Zhang, H.M., Cao, J.: Molecular characterization of the effects of Ganoderma Lucidum polysaccharides on the structure and activity of bovine serum albumin. Spectrochim. Acta, Part A 206, 538–546 (2019)

    Article  CAS  Google Scholar 

  18. Zhang, H.M., Lou, K., Cao, J., Wang, Y.Q.: Interaction of a hydrophobic-functionalized PAMAM dendrimer with bovine serum albumin: thermodynamic and structural changes. Langmuir 30, 5536–5544 (2014)

    Article  CAS  PubMed  Google Scholar 

  19. Guan, Q.X., Ji, D.Y., Sun, B., Qiao, J., He, T., Zhang, G.Y., Yu, Z.J., Yin, J.Y., Yang, W.: Synthesis of folate conjugated stearic acid grafted Bletilla striata polysaccharides copolymers and application for delivering antitumor drugs as a drug delivery carrier. Chem. J. Chin. Univ. 39, 1815–1822 (2018)

    CAS  Google Scholar 

  20. Liu, Y.R., Wu, J., Huang, L., Qiao, J., Wang, N., Yu, D., Zhang, G.Y., Yu, S.M., Guan, Q.X.: Synergistic effects of antitumor effificacy via mixed nano-size micelles of multifunctional Bletilla striata polysaccharide-based copolymer and D-α-tocopheryl polyethylene glycol succinate. Int. J. Biol. Macromol. 154, 499–510 (2020)

    Article  CAS  PubMed  Google Scholar 

  21. Belder, A., Granath, K.: Preparation and properties of fluorescein-labelled dextrans. Carbohydr. Res. 30, 375–378 (1973)

    Article  Google Scholar 

  22. Mahanthappa, M., Yellappa, S., Savanur, M.A., Puthusseri, B.: Spectroscopic and electrochemical studies on the molecular interaction between copper sulphide nanoparticles and bovine serum albumin. J. Mater. Sci. 53, 202–214 (2017)

    Article  CAS  Google Scholar 

  23. Hua, Y.J., Liu, Y., Zhang, L.X., Zhao, R.M., Qu, S.S.: Studies of interaction between colchicine and bovine serum albumin by fluorescence quenching method. J. Mol. Struct. 750, 174–178 (2005)

    Article  CAS  Google Scholar 

  24. Li, X.H., Yang, C.L., Shen, H.: Gentiopicroside exerts convincing antitumor effects in human ovarian carcinoma cells (SKOV3) by inducing cell cycle arrest, mitochondrial mediated apoptosis and inhibition of cell migration. J. BUON. 24, 280–284 (2019)

    PubMed  Google Scholar 

  25. Zhu, Y.X., Yuan, T., Zhang, Y., Shi, J.Y., Bai, L., Duan, X.M., Tong, R.S., Zhong, L.: AR-42: A Pan-HDAC Inhibitor with Antitumor and Antiangiogenic Activities in Esophageal Squamous Cell Carcinoma. Drug Des., Dev. Ther. 13, 4321–4330 (2019).

  26. Huang, X.Q., Wu, J.R., He, M.Y., Hou, X.Y., Wang, Y., Cai, X.R., Xin, H.L., Gao, F., Chen, Y.Z.: Combined Cancer Chemo-Photodynamic and Photothermal Therapy Based on ICG/PDA/TPZ-Loaded Nanoparticles. Mol. Pharmaceutics. 16, 2172–2183 (2019)

    Article  CAS  Google Scholar 

  27. Zhang, P., Kong, J.L.: Doxorubicin-tethered fluorescent silica nanoparticles for pH-responsive anticancer drug delivery. Talanta 134, 501–507 (2015)

    Article  CAS  PubMed  Google Scholar 

  28. Switacz Victoria, K., Wypysek Sarah, K., Degen, R., Crassous Jérôme, J., Spehr, M., Richtering, W.: Influence of Size and Cross-Linking Density of Microgels on Cellular Uptake and Uptake Kinetics. Biomacromol 21, 4532–4544 (2020)

    Article  CAS  Google Scholar 

  29. Ge, C.C., Tian, J., Zhao, Y.L., Chen, C.Y., Zhou, R.H., Chai, Z.F.: Towards understanding of nanoparticle-protein corona. Arch. Toxicol. 89, 519–539 (2015)

    Article  CAS  PubMed  Google Scholar 

  30. Wang, Y.S., Jiang, Q., Liu, L.R., Zhang, Q.Q.: The interaction between bovine serum albumin and the self-aggregated nanoparticles of cholesterol-modified O-carboxymethyl chitosan. Polym. 48, 4135–4142 (2007)

    Article  CAS  Google Scholar 

  31. Walkey, C.D., Chan, W.C.W.: Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 41, 2780–2799 (2012)

    Article  CAS  PubMed  Google Scholar 

  32. Li, D.J., Zhu, J.F., Jin, J., Yao, X.J.: Studies on the binding of nevadensin to human serum albumin by molecular spectroscopy and modeling. J. Mol. Struct. 846, 34–41 (2007)

    Article  CAS  Google Scholar 

  33. Shahabadi, N., Maghsudi, M., Rouhani, S.: Study on the interaction of food colourant quinoline yellow with bovine serum albumin by spectroscopic techniques. Food Chem. 135, 1836–1841 (2012)

    Article  CAS  PubMed  Google Scholar 

  34. Mariam, J., Dongre, P.M., Kothari, D.C.: Study of interaction of silver nanoparticles with bovine serum albumin using fluorescence spectroscopy. J. Fluoresc. 21, 2193–2199 (2011)

    Article  CAS  PubMed  Google Scholar 

  35. Weber, G., Lakowicz, J.R.: Nanosecond segmental mobilities of tryptophan residues in proteins observed by lifetime-resolved fluorescence anisotropies. Biophys. J. 32, 591–601 (1980)

    Article  PubMed  PubMed Central  Google Scholar 

  36. Husain, M.A., Ishqi, H.M., Rehman, S.U., Sarwar, T., Afrin, S., Rahman, Y., Tabish, M.: Elucidating the interaction of sulindac with calf thymus DNA: biophysical and in silico molecular modelling approach. New J. Chem. 41, 14924–14935 (2017)

    Article  CAS  Google Scholar 

  37. Zhang, Y.Z., Xiang, X., Mei, P., Dai, J., Zhang, L.L., Liu, Y.: Spectroscopic studies on the interaction of Congo Red with bovine serum albumin. Spectrochim. Acta, Part A 72, 907–914 (2009)

    Article  CAS  Google Scholar 

  38. Ross, P.D., Subramanian, S.: Thermodynamics of protein association reactions forces contributing to stability. Biochemistry 20, 3096–3102 (1981)

    Article  CAS  PubMed  Google Scholar 

  39. Rahman, M.H., Maruyama, T., Okada, T., Yamasaki, K., Otagiri, M.: Study of interaction of carprofen and its enantiomers with human serum albumin-I: Mechanism of binding studied by dialysis and spectroscopic methods. Biochem. Pharmacol. 46, 1721–1731 (1993)

    Article  CAS  PubMed  Google Scholar 

  40. Mote, U.S., Bhattar, S.L., Patil, S.R., Kolekar, G.B.: Interaction between felodipine and bovine serum albumin: fluorescence quenching study. Luminescence 25, 1–8 (2010)

    CAS  PubMed  Google Scholar 

  41. Zhang, G., Zhao, N., Hu, X., Tian, J.: Interaction of alpinetin with bovine serum albumin: Probing of the mechanism and binding site by spectroscopic methods. Spectrochim. Acta, Part A 76, 410–417 (2010)

    Article  CAS  Google Scholar 

  42. Li, G., Huang, J.Y., Chen, T., Wang, X.Y., Zhang, H.J., Chen, Q.: Insight into the interaction between chitosan and bovine serum albumin. Carbohydr. Polym. 176, 75–82 (2017)

    Article  CAS  PubMed  Google Scholar 

  43. Hu, Y.J., Liu, Y., Jiang, W., Zhao, R.M., Qu, S.S.: Fluorometric investigation of the interaction of bovine serum albumin with surfactants and 6-mercaptopurine. J. Photochem. Photobiol. B. 80, 235–242 (2005).

  44. Peer, D., Karp, J.M., Hong, S., Farokhzad, O.C., Margalit, R., Langer, R.: Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007)

    Article  CAS  PubMed  Google Scholar 

  45. Liu, S.Q., Nikken, W., Gao, S.J., Tong, Y.W., Yan, Y.Y.: Bio-functional micelles self-assembled from a folate-conjugated block copolymer for targeted intracellular delivery of anticancer drugs. Biomaterials 28, 1423–1433 (2007)

    Article  CAS  PubMed  Google Scholar 

  46. Wang, C., Zhu, J., Ma, J., Yang, Y., Cui, X.: Functionalized Bletilla striata polysaccharide micelles for targeted intracellular delivery of Doxorubicin: In vitro and in vivo evaluation. Intern. J. Pharma. 567, 118436 (2019).

  47. Li, M., Tang, Z., Lv, S., Song, W., Hong, H., Jing, X., Zhang, Y., Chen, X.: Cisplatin crosslinked pH-sensitive nanoparticles for efficient delivery of doxorubicin. Biomaterials 35, 3851–3864 (2014)

    Article  CAS  PubMed  Google Scholar 

  48. Wang, F., Zhang, D., Duan, C., Jia, L., Feng, F., Liu, Y., Wang, Y., Hao, L., Zhang, Q.: Preparation and characterizations of a novel deoxycholic acid–O-carboxymethylated chitosan–folic acid conjugates and self-aggregates. Carbohydr. Polym. 84, 1192–1200 (2011)

    Article  CAS  Google Scholar 

  49. Lesniak, A., Salvati, A., Santos-Martinez, M.J., Radomski, M.W., Dawson, K.A., Aberg, C.: Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J. Am Chem. Soc. 135, 1438–1444 (2013)

    Article  CAS  PubMed  Google Scholar 

  50. Liu, P., Sun, Y., Wang, Q., Sun, Y., Li, H., Duan, Y.: Intracellular trafficking and cellular uptake mechanism of mPEG-PLGA-PLL and mPEG-PLGA-PLL-Gal nanoparticles for targeted delivery to hepatomas. Biomaterials 35, 760–770 (2014)

    Article  CAS  PubMed  Google Scholar 

  51. Zhong, L., Xu, L., Liu, Y., Li, Q., Zhao, D., Li, Z., Zhang, H., Zhang, H., Kan, Q., Wang, Y., Sun, J., He, Z.: Transformative hyaluronic acid-based active targeting supramolecular nanoplatform improves long circulation and enhances cellular uptake in cancer therapy. Acta Pharm. Sin. B. 9, 397–409 (2019)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research was supported by Graduate Innovation Fund of Jilin University (101832018C084).

Author information

Authors and Affiliations

Authors

Contributions

Xinying Wang: Conceptualization, Methodology, Formal analysis, Writing—Original Draft, Writing—Review & Editing. Guangyuan Zhang: Conceptualization, Software, Data Curation, Writing—Review & Editing, Visualization, Di Yu: Validation, Investigation, Resources. Ning Wang: Validation, Data Curation, Writing—Review & Editing. Qingxiang Guan: Conceptualization, Writing—Review & Editing, Supervision, Funding acquisition.

Corresponding author

Correspondence to Qingxiang Guan.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Competing interest

The authors declare that they have known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, G., Yu, D. et al. The interaction of folate-modified Bletilla striata polysaccharide-based micelle with bovine serum albumin. Glycoconj J 38, 585–597 (2021). https://doi.org/10.1007/s10719-021-10022-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-021-10022-y

Keywords

Navigation