Skip to main content
Log in

A new interpretation of sulfate activation of rabbit muscle glycogen phosphorylase

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

It is widely known that sulfate ion at high concentration serves like an allosteric activator of glycogen phosphorylase (GP). Based on the crystallographic studies on GP, it has been assumed that the sulfate ion is bound close to the phosphorylatable Ser14 site of nonactivated GP, causing a conformational change to catalytically-active GP. However, there are also reports that sulfate ion inhibits allosterically-activated GP by preventing the phosphate substrate from attaching to the catalytic site. In the present study, using a high concentration of sulfate ion, significant enhancement of GP activity was observed when macromolecular glycogen was used as substrate but not when smaller maltohexaose was used. In glycogen solution, nonreducing-end glucose residues are localized on the surface of glycogen and are not distributed homogenously in the solution. Using cyclodextrin-immobilized column chromatography, we found that sulfate at high concentration promoted GP–dextrin binding through the dextrin-binding site (DBS) located away from the catalytic site. This result is consistent with the properties of the DBSs found in glycogen-debranching enzyme and β-amylase. Therefore, we propose a new interpretation of the sulfate activation of GP, wherein sulfate ions at high concentration promote glycogen-binding to the DBS directly, and glycogen-binding to the catalytic site indirectly. Our findings were successfully applied to the affinity purification of porcine brain GP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CD:

cyclodextrin

DBS:

dextrin-binding site

GDE:

glycogen-debranching enzyme

Glc:

D-glucose

Glc-1-P:

α-D-glucose 1-phosphate

GlcPA:

1-deoxy-1-[(2-pyridyl)amino]-D-glucitol

GP:

glycogen phosphorylase

HPLC:

high-performance liquid chromatography

MW:

molecular weight

PA:

pyridylamino

Pi :

inorganic phosphate

Ser:

L-serine

References

  1. Roach, P.J., Depaoli-Roach, A.J., Hurley, T.D., Tagliabracci, V.S.: Glycogen and its metabolism: some new developments and old themes. Biochem. J. 441, 763–787 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Brown, A.M.: Brain glycogen re-awakened. J. Neurochem. 89, 537–552 (2004)

    Article  PubMed  CAS  Google Scholar 

  3. Titani, K., Koide, A., Hermann, J., Ericsson, L.H., Kumar, S., Wade, R.D., Walsh, K.A., Neurath, H., Fisher, E.H.: Complete amino acid sequence of rabbit muscle glycogen phosphorylase. Proc. Natl. Acad. Sci. U. S. A. 74, 4762–4766 (1977)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Tagaya, M., Fukui, T.: Catalytic reaction of glycogen phosphorylase reconstituted with a coenzyme-substrate conjugate. J. Biol. Chem. 259, 4860–4865 (1984)

    PubMed  CAS  Google Scholar 

  5. Gordon, R.B., Brown, D.H., Brown, B.I.: Preparation and properties of the glycogen-debranching enzyme from rabbit liver. Biochim. Biophys. Acta. 289, 97–107 (1972)

    Article  PubMed  CAS  Google Scholar 

  6. Zhai, L., Feng, L., Xia, L., Yin, H., Xiang, S.: Crystal structure of glycogen debranching enzyme and insights into its catalysis and disease-causing mutations. Nat. Commun. 7, 11229 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Sato, S., Ohi, T., Nishino, I., Sugie, H.: Confirmation of the efficiency of vitamin B6 supplementation for McArdle disease by follow-up muscle biopsy. Muscle Nerve. 45, 436–440 (2012)

    Article  PubMed  Google Scholar 

  8. Cori, C.F., Cori, G.T.: Carbohydrate metabolism. Annu. Rev. Biochem. 10, 151–180 (1941)

    Article  CAS  Google Scholar 

  9. Voet D., Voet J.D.: Biochemistry (third edition) pp. 626–656. John Wiley & Sons Inc., Hoboken (2004)

  10. Krebs, E.G., Love, D.S., Bratvold, G.E., Trayser, K.A., Meyer, W.L., Fischer, E.H.: Purification and properties of rabbit skeletal muscle phosphorylase b kinase. Biochemistry. 3, 1022–1033 (1964)

    Article  PubMed  CAS  Google Scholar 

  11. Miyagawa, D., Makino, Y., Sato, M.: Sensitive, nonradioactive assay of phosphorylase kinase through measurement of enhanced phosphorylase activity towards fluorogenic dextrin. J. Biochem. 159, 239–246 (2016)

    Article  PubMed  CAS  Google Scholar 

  12. Lowry, O.H., Schult, D.W., Passonneau, J.V.: Effects of adenylic acid on the kinetics of muscle phosphorylase a. J. Biol. Chem. 239, 1947–1953 (1964)

    PubMed  CAS  Google Scholar 

  13. Engers, H.D., Madsen, N.B.: The effect of anions on the activity of phosphorylase b. Biochem. Biophys. Res. Commun. 33, 49–54 (1968)

    Article  PubMed  CAS  Google Scholar 

  14. Yunis, A.A., Assaf, S.A.: Purification and properties of glycogen phosphorylase from bovine corpus luteum. Kinetics of salt activation. Biochemistry. 9, 4381–4388 (1970)

    Article  PubMed  CAS  Google Scholar 

  15. Stalmans, W., Hers, H.G.: The stimulation of liver phosphorylase b by AMP, fluoride and sulfate. Eur. J. Biochem. 54, 341–350 (1975)

    Article  PubMed  CAS  Google Scholar 

  16. Leonidas, D.D., Oikonomakos, N.G., Papageorgiou, A.C., Xenakis, A., Cazianis, C.T., Bem, F.: The ammonium sulfate activation of phosphorylase b. FEBS Lett. 261, 23–27 (1990)

    Article  PubMed  CAS  Google Scholar 

  17. Zographos, S.E., Oikonomakos, N.G., Dixon, H.B.F., Griffin, W.G., Johnson, L.N., Leonidas, D.D.: Sulfate-activated phosphorylase b: the pH-dependence of catalytic activity. Biochem. J. 310, 565–570 (1995)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Sprang, S.R., Withers, S.G., Goldsmith, E.J., Fletterick, R.J., Madsen, N.B.: Structural basis for the activation of glycogen phosphorylase b by adenosine monophosphate. Science. 254, 1367–1371 (1991)

    Article  PubMed  CAS  Google Scholar 

  19. Makino, Y., Fujii, Y., Taniguchi, M.: Properties and functions of the storage sites of glycogen phosphorylase. J. Biochem. 157, 451–458 (2015)

    Article  PubMed  CAS  Google Scholar 

  20. Barford, D., Johnson, L.N.: The allosteric transition of glycogen phosphorylase. Nature. 340, 609–616 (1989)

    Article  PubMed  CAS  Google Scholar 

  21. Johnson, L.N., Hu, S.H., Barford, D.: Catalytic mechanism of glycogen phosphorylase. Faraday Discuss. 93, 131–142 (1992)

    Article  CAS  Google Scholar 

  22. Leonidas, D.D., Oikonomakos, N.G., Papageorgiou, A.C., Acharya, K.R., Barford, D., Johnson, L.N.: Control of phosphorylase b conformation by a modified cofactor: crystallographic studies on R-state glycogen phosphorylase reconstituted with pyridoxal 5′-diphosphate. Protein Sci. 1, 1112–1122 (1992)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lin, K., Hwang, P.K., Fletterick, R.J.: Distinct phosphorylation signals converge at the catalytic center in glycogen phosphorylases. Structure. 5, 1511–1523 (1997)

    Article  PubMed  CAS  Google Scholar 

  24. Sealock, R.W., Graves, D.J.: Effect of salt solutions on glycogen phosphorylase. A possible role of the phosphoryl group in phosphorylase a. Biochemistry. 6, 201–207 (1967)

    Article  PubMed  CAS  Google Scholar 

  25. Kasvinsky, P.J., Madsen, N.B., Fletterick, R.J., Sygusch, J.: X-ray crystallographic and kinetic studies of oligosaccharide binding to phosphorylase. J. Biol. Chem. 253, 1290–1296 (1978)

    PubMed  CAS  Google Scholar 

  26. Mikami, B., Hehre, E.J., Sato, M., Katsube, Y., Hirose, M., Morita, Y., Sacchettini, J.C.: The 2.0-Å resolution structure of soybean β-amylase complexed with α-cyclodextrin. Biochemistry. 32, 6836–6845 (1993)

    Article  PubMed  CAS  Google Scholar 

  27. Okubo, M., Horinishi, A., Takeuchi, M., Suzuki, Y., Sakura, N., Hasegawa, Y., Igarashi, T., Goto, K., Tahara, H., Uchimoto, S., Omichi, K., Kanno, H., Hayasaka, K., Murase, T.: Heterogeneous mutations in the glycogen-debranching enzyme gene are responsible for glycogen storage disease type IIIa in Japan. Hum. Genet. 106, 108–115 (2000)

    Article  PubMed  CAS  Google Scholar 

  28. Guillén, D., Sánchez, S., Rodríguez-Sanoja, R.: Carbohydrate-binding domains: multiplicity of biological roles. Appl. Microbiol. Biotechnol. 85, 1241–1249 (2010)

    Article  PubMed  CAS  Google Scholar 

  29. Nakayama, A., Yamamoto, K., Tabata, S.: High expression of glycogen-debranching enzyme in Escherichia coli and its competent purification method. Protein Expr. Purif. 19, 298–303 (2000)

    Article  PubMed  CAS  Google Scholar 

  30. Totsuka, A., Fukazawa, C.: Affinity purification of β-amylase originating from plant using cyclomaltohexaose-immobilized Sepharose 6B in the presence of ammonium sulfate. Protein Expr. Purif. 4, 333–336 (1993)

    Article  PubMed  CAS  Google Scholar 

  31. Hase, S., Ikenaka, T., Matsushima, Y.: Structure analyses of oligosaccharides by tagging of the reducing end sugars with a fluorescent compound. Biochem. Biophys. Res. Commun. 85, 257–263 (1978)

    Article  PubMed  CAS  Google Scholar 

  32. Makino, Y., Omichi, K.: Acceptor specificity of 4-α-glucanotransferases of mammalian glycogen debranching enzymes. J. Biochem. 139, 535–541 (2006)

    Article  PubMed  CAS  Google Scholar 

  33. Nakamura, M., Makino, Y., Takagi, C., Yamagaki, T., Sato, M.: Probing the catalytic site of rabbit muscle glycogen phosphorylase using a series of specifically modified maltohexaose derivatives. Glycoconj. J. 34, 563–574 (2017)

    Article  PubMed  CAS  Google Scholar 

  34. Vretblad, P.: Immobilization of ligands for biospecific affinity chromatography via their hydroxyl group: the cyclohexaamylose-β-amylase system. FEBS Lett. 47, 86–89 (2000)

    Article  Google Scholar 

  35. Fiske, C.H., Subbarow, Y.: The colorimetric determination of phosphorus. J. Biol. Chem. 66, 375–400 (1925)

    CAS  Google Scholar 

  36. Saheki, S., Takeda, A., Shimazu, T.: Assay of inorganic phosphate in the mild pH range, suitable for measurement of glycogen phosphorylase activity. Anal. Biochem. 148, 277–281 (1985)

    Article  PubMed  CAS  Google Scholar 

  37. Ishimizu, T., Hashimoto, C., Takeda, R., Fujii, K., Hase, S.: A novel α1,2-L-fucosidase acting on xyloglucan oligosaccharides is associated with endo-β-mannosidase. J. Biochem. 142, 721–729 (2007)

    Article  PubMed  CAS  Google Scholar 

  38. Natsuka, S., Masuda, M., Sumiyoshi, W., Nakakita, S.: Improved method for drawing of a glycan map, and the first page of glycan atlas, which is a compilation of glycan maps for a whole organism. PLoS One. 9, e102219 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Makino, Y., Omichi, K.: Sensitive assay of glycogen phosphorylase activity by analysing the chain-lengthening action on a fluorogenic maltooligosaccharide derivative. J. Biochem. 146, 71–76 (2009)

    Article  PubMed  CAS  Google Scholar 

  40. Pinotsis, N., Leonidas, D.D., Chrysina, E.D., Oikonomakos, N.G., Mavridis, I.M.: The binding of β- and γ-cyclodextrins to glycogen phosphorylase b: kinetic and crystallographic studies. Protein Sci. 12, 1914–1924 (2003)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Zhang, Y., Cremer, P.S.: Interactions between macromolecules and ions: the Hofmeister series. Curr. Opin. Chem. Biol. 10, 658–663 (2006)

    Article  PubMed  CAS  Google Scholar 

  42. Yang, Z.: Hofmeister effects: an explanation for the impact of ionic liquids on biocatalysis. J. Biotechnol. 144, 49–54 (2009)

    Article  CAS  Google Scholar 

  43. Philip, G., Gringel, G., Palm, D.: Rabbit muscle phosphorylase derivatives with oligosaccharides covalently bound to the glycogen storage site. Biochemistry. 21, 3043–3050 (1982)

    Article  PubMed  CAS  Google Scholar 

  44. Madsen, N.B., Shechosky, S., Fletterick, R.J.: Site-site interactions in glycogen phosphorylase b probed by ligands specific for each site. Biochemistry. 22, 4460–4465 (1983)

    Article  PubMed  CAS  Google Scholar 

  45. Buchbinder, J.L., Rath, V.L., Fletterick, R.J.: Structural relationships among regulated and unregulated phosphorylases. Annu. Rev. Biophys. Biomol. Struct. 30, 191–209 (2001)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Makino.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujii, Y., Makino, Y. & Sato, M. A new interpretation of sulfate activation of rabbit muscle glycogen phosphorylase. Glycoconj J 35, 299–309 (2018). https://doi.org/10.1007/s10719-018-9823-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-018-9823-x

Keywords

Navigation