Skip to main content
Log in

Targeted, Site-specific quantitation of N- and O-glycopeptides using 18O–labeling and product ion based mass spectrometry

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The site-specific quantitation of N- and O-glycosylation is vital to understanding the function(s) of different glycans expressed at a given site of a protein under physiological and disease conditions. Most commonly used precursor ion intensity based quantification method is less accurate and other labeled methods are expensive and require enrichment of glycopeptides. Here, we used glycopeptide product (y and Y0) ions and 18O–labeling of C-terminal carboxyl group as a strategy to obtain quantitative information about fold-change and relative abundance of most of the glycoforms attached to the glycopeptides. As a proof of concept, the accuracy and robustness of this targeted, relative quantification LC-MS method was demonstrated using Rituximab. Furthermore, the N-glycopeptide quantification results were compared with a biosimilar of Rituximab and validated with quantitative data obtained from 2-AB-UHPLC-FL method. We further demonstrated the intensity fold-change and relative abundance of 46 unique N- and O-glycopeptides and aglycopeptides from innovator and biosimilar samples of Etanercept using both the normal-MS and product ion based quantitation. The results showed a very similar site-specific expression of N- and O-glycopeptides between the samples but with subtle differences. Interestingly, we have also been able to quantify macro-heterogeneity of all N- and O-glycopetides of Etanercept. In addition to applications in biotherapeutics, the developed method can also be used for site-specific quantitation of N- and O-glycopeptides and aglycopeptides of glycoproteins with known glycosylation pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

2-AB:

2-amino benzamide

AGP:

aglycopeptide or unoccupied glycopeptide

Asp-N:

endoprotinase AspN;

CE:

collision energy

CID:

collision induced dissociation

Cmc:

carboxymethylation

DDA:

data-dependent acquisition

DIA:

data-independent acquisition

ECD:

electron capture dissociation

ER:

endoplasmic reticulum

ETD:

electron transfer dissociation

Fuc:

fucose

GalNAc:

N-acetylgalactosamine

GlcNAc:

N-acetylglucosamine

GP:

glycopeptide(s)

HCD:

higher-energy collision dissociation

HILIC:

hydrophilic interaction liquid chromatography

IR:

insulin resistance

iTRAQ:

isobaric tag for relative and absolute quantitation

LC:

liquid chromatography

Man:

mannose

MRM:

multiple reaction monitoring

MRM-HR:

multiple reaction monitoring – high resolution

NeuAc:

N-acetylneuraminic acid

PGC:

porous graphitized carbon

PRM:

parallel reaction monitoring

RP:

reversed phase

RT:

retention time

SILAC:

stable isotope labeling with amino acids in cell culture

SPE:

solid phase extraction

XIC:

extracted ion chromatogram

UHPLC-FL:

Ultra-high performance liquid chromatography with fluorescence detector.

References

  1. Babu P., North S.J., Jang-Lee J., Chalabi S., Mackerness K., Stowell S.R., Cummings R.D., Rankin S., Dell A., Haslam S.M.: Structural characterisation of neutrophil glycans by ultra sensitive mass spectrometric glycomics methodology. Glycoconj. J. 26, 975–986 (2009)

    Article  CAS  PubMed  Google Scholar 

  2. Wada Y., Azadi P., Costello C.E., Dell A., Dwek R.A., Geyer H., Geyer R., Kakehi K., Karlsson N.G., Kato K., et al.: Comparison of the methods for profiling glycoprotein glycans--HUPO human disease glycomics/proteome initiative multi-institutional study. Glycobiology. 17, 411–422 (2007)

    Article  CAS  PubMed  Google Scholar 

  3. Ito H., Kaji H., Togayachi A., Azadi P., Ishihara M., Geyer R., Galuska C., Geyer H., Kakehi K., Kinoshita M., et al.: Comparison of analytical methods for profiling N- and O-linked glycans from cultured cell lines : HUPO Human Disease Glycomics/Proteome Initiative multi-institutional study. Glycoconj. J. 33(3), 405–415 (2016)

    Article  CAS  PubMed  Google Scholar 

  4. Dong Q., Yan X., Liang Y., Stein S.E.: In-Depth Characterization and Spectral Library Building of Glycopeptides in the Tryptic Digest of a Monoclonal Antibody Using 1D and 2D LC-MS/MS. J. Proteome Res. (2016). doi:10.1021/acs.jproteome.5b01046

    Google Scholar 

  5. Madera M., Mechref Y., Novotny M.V.: Combining lectin microcolumns with high-resolution separation techniques for enrichment of glycoproteins and glycopeptides. Anal. Chem. 77, 4081–4090 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alvarez-Manilla G., Atwood J., Guo Y., Warren N.L., Orlando R., Pierce M.: Tools for glycoproteomic analysis: size exclusion chromatography facilitates identification of tryptic glycopeptides with N-linked glycosylation sites. J. Proteome Res. 5, 701–708 (2006)

    Article  CAS  PubMed  Google Scholar 

  7. Wada Y., Tajiri M., Yoshida S.: Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal. Chem. 76, 6560–6565 (2004)

    Article  CAS  PubMed  Google Scholar 

  8. Hägglund P., Bunkenborg J., Elortza F., Jensen O.N., Roepstorff P.: A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J. Proteome Res. 3, 556–566 (2004)

    Article  PubMed  Google Scholar 

  9. Liu J., Wang F., Zhu J., Mao J., Liu Z., Cheng K., Qin H., Zou H.: Highly efficient N-glycoproteomic sample preparation by combining C18 and graphitized carbon adsorbents. Anal. Bioanal. Chem. 406, 3103–3109 (2014)

    Article  CAS  PubMed  Google Scholar 

  10. Huddleston M.J., Bean M.F., Carr S.A.: Collisional fragmentation of glycopeptides by electrospray ionization LC/MS and LC/MS/MS: methods for selective detection of glycopeptides in protein digests. Anal. Chem. 65, 877–884 (1993)

    Article  CAS  PubMed  Google Scholar 

  11. Saba J., Dutta S., Hemenway E., Viner R.: Increasing the productivity of glycopeptides analysis by using higher-energy collision dissociation-accurate mass-product-dependent electron transfer dissociation. Int. J. Prosthodont. 2012, 560391 (2012)

    Google Scholar 

  12. Wu S., Pu T., Viner R., Khoo K.: Novel LC-MS 2 product dependent parallel data acquisition function and data analysis work fl ow for sequencing and Identi fi cation of intact glycopeptides. Anal. Chem. 86, 5478–5486 (2014)

    Article  CAS  PubMed  Google Scholar 

  13. Khatri K., Staples G.O., Leymarie N., Leon D.R., Turiák L., Huang Y., Yip S., Hu H., Heckendorf C.F., Zaia J.: Confident assignment of site-specific glycosylation in complex glycoproteins in a single step. J. Proteome Res. 13, 4347–4355 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Parker B.L., Palmisano G., Edwards A.V.G., White M.Y., Engholm-Keller K., Lee A., Scott N.E., Kolarich D., Hambly B.D., Packer N.H., et al.: Quantitative N-linked Glycoproteomics of Myocardial Ischemia and Reperfusion Injury Reveals Early Remodeling in the Extracellular Environment. Mol. Cell. Proteomics. 10, M110.006833–M110.006833 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  15. Parker B.L., Thaysen-Anderson M., Fazakerly D.J., Holliday M., Packer N.H., James D.E.: Terminal Galactosylastion and sialylation switching on membrane glycoproteins upon TNF-alpha-induced insulin resistance in adipocytes. Mol. Cell. Proteomics. 15(1), 141–153 (2015) epub:epub

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fenselau C., Yao X.: 18O2-labeling in quantitative proteomic strategies: a status report. J. Proteome Res. 8, 2140–2143 (2009)

    Article  CAS  PubMed  Google Scholar 

  17. Kristiansen T.Z., Harsha H.C., Grønborg M., Maitra A., Pandey A.: Differential membrane proteomics using 18O-labeling to identify biomarkers for cholangiocarcinoma. J. Proteome Res. 7, 4670–4677 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim J.-S., Fillmore T.L., Liu T., Robinson E., Hossain M., Champion B.L., Moore R.J., Camp D.G., Smith R.D., Qian W.-J.: 18O-Labeled Proteome Reference as Global Internal Standards for Targeted Quantification by Selected Reaction Monitoring-Mass Spectrometry. Mol. Cell. Proteomics. 10, M110.007302–M110.007302 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schiestl M., Stangler T., Torella C., Cepeljnik T., Toll H., Grau R.: Acceptable changes in quality attributes of glycosylated biopharmaceuticals. Nat. Biotechnol. 29, 310–312 (2011)

    Article  CAS  PubMed  Google Scholar 

  20. Dimitrov D.S.M.J.: Therapeutic antibodies: coming, state and future trends–is a paradigm change soon? Methods Mol. Biol. 525, 1–27 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Glennie M.J., French R.R., Cragg M.S., Taylor R.P.: Mechanisms of killing by anti-CD20 monoclonal antibodies. Mol. Immunol. 44, 3823–3837 (2007)

    Article  CAS  PubMed  Google Scholar 

  22. Elliott S., Lorenzini T., Asher S., Aoki K., Brankow D., Buck L., Busse L., Chang D., Fuller J., Grant J., et al.: Enhancement of therapeutic protein in vivo activities through glycoengineering. Nat. Biotechnol. 21, 414–421 (2003)

    Article  CAS  PubMed  Google Scholar 

  23. Higuchi M., Oh-eda M., Kuboniwa H., Tomonoh K., Shimonaka Y., Ochi N.: Role of sugar chains in the expression of the biological activity of human erythropoietin. J. Biol. Chem. 267, 7703–7709 (1992)

    CAS  PubMed  Google Scholar 

  24. Reusch D., Haberger M., Maier B., Maier M., Kloseck R., Zimmermann B., Hook M., Szabo Z., Tep S., Wegstein J., et al.: Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles--part 1: separation-based methods. MAbs. 7, 167–179 (2015)

    Article  CAS  PubMed  Google Scholar 

  25. Domon B., Costello C.E.A.: Systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj. J. 5, 397–409 (1988)

    Article  CAS  Google Scholar 

  26. Maity S., Ullanat R., Lahiri S., Shekar S., Sodhan G., Vyas A., Dyaga G., Ireni S., Nair N., Sotsios Y., et al.: A non-innovator version of etanercept for treatment of arthritis. Biologicals. 39, 384–395 (2011)

    Article  CAS  PubMed  Google Scholar 

  27. Houel S., Hilliard M., Yu Y.Q., Meloughlin N.O., Millan S., Rudd P.M., William J.P., Chen W.: N- and O-Glycosylation Analysis of Etanercept using Liquid Chromatography and Quadrupole Time-of-Flight Mass Spectrometry Equipped with Electron Transfer Dissociation Functionality. Anal. Chem. 86, 576–584 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. Tan Q., Guo Q., Fang C., Wang C., Li B., Wang H., Li J., Guo Y.: Characterization and comparison of commercially available TNF receptor 2-Fc fusion protein products. MAbs. 4, 761–774 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  29. Huang L.-J., Lin J.-H., Tsai J.-H., Chu Y.-Y., Chen Y.-W., Chen S.-L., Chen S.-H.: Identification of protein O-glycosylation site and corresponding glycans using liquid chromatography-tandem mass spectrometry via mapping accurate mass and retention time shift. J. Chromatogr. A. 1371, 136–145 (2014)

    Article  CAS  PubMed  Google Scholar 

  30. Stavenhagen K., Hinneburg H., Thaysen-Andersen M., Hartmann L., Silva D.V., Fuchser J., Kaspar S., Rapp E., Seeberger P.H., Kolarich D.: Quantitative mapping of glycoprotein micro-heterogeneity and macro-heterogeneity: an evaluation of mass spectrometry signal strengths using synthetic peptides and glycopeptides. J. Mass Spectrom. 48, 627–639 (2013)

    Article  CAS  PubMed  Google Scholar 

  31. Zielinska D.F., Gnad F., Wiśniewski J.R., Mann M.: Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell. 141, 897–907 (2010)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Department of Biotechnology, Govt. India, Ramaswamy, S. and Saiyed, T. of C-CAMP for their support. This work was supported through internal technology development funding to mass spectrometry facility of C-CAMP. We would like to thank AB Sciex, Pvt. Ltd. for supporting with mass spectrometer and accessories through collaboration. We thank the reviewers for their suggestion to improve readability of the manuscript.

Author contributions

PB conceived the project, designed experiments, analyzed data and written the paper. SJ and AR performed the experiments, analyzed the data and contributed to writing the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ponnusamy Babu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

The online version of this article contains supplementary material, which is available to authorized users. The supplementary information file (pdf) includes detailed experimental section, supplementary Tables S1 to S3, Figure legends, and supplementary Figs. S1 to S22.

ESM 1

(PDF 12651 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srikanth, J., Agalyadevi, R. & Babu, P. Targeted, Site-specific quantitation of N- and O-glycopeptides using 18O–labeling and product ion based mass spectrometry. Glycoconj J 34, 95–105 (2017). https://doi.org/10.1007/s10719-016-9733-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9733-8

Keywords

Navigation