Skip to main content
Log in

A dual approach for improving homogeneity of a human-type N-glycan structure in Saccharomyces cerevisiae

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

N-glycosylation is an important feature of therapeutic and other industrially relevant proteins, and engineering of the N-glycosylation pathway provides opportunities for developing alternative, non-mammalian glycoprotein expression systems. Among yeasts, Saccharomyces cerevisiae is the most established host organism used in therapeutic protein production and therefore an interesting host for glycoengineering. In this work, we present further improvements in the humanization of the N-glycans in a recently developed S. cerevisiae strain. In this strain, a tailored trimannosyl lipid-linked oligosaccharide is formed and transferred to the protein, followed by complex-type glycan formation by Golgi apparatus-targeted human N-acetylglucosamine transferases. We improved the glycan pattern of the glycoengineered strain both in terms of glycoform homogeneity and the efficiency of complex-type glycosylation. Most of the interfering structures present in the glycoengineered strain were eliminated by deletion of the MNN1 gene. The relative abundance of the complex-type target glycan was increased by the expression of a UDP-N-acetylglucosamine transporter from Kluyveromyces lactis, indicating that the import of UDP-N-acetylglucosamine into the Golgi apparatus is a limiting factor for efficient complex-type N-glycosylation in S. cerevisiae. By a combination of the MNN1 deletion and the expression of a UDP-N-acetylglucosamine transporter, a strain forming complex-type glycans with a significantly improved homogeneity was obtained. Our results represent a further step towards obtaining humanized glycoproteins with a high homogeneity in S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Walsh G., Jefferis R.: Post-translational modifications in the context of therapeutic proteins. Nat. Biotechnol. 24, 1241–1252 (2006)

    Article  CAS  PubMed  Google Scholar 

  2. Costa A.R.A., Rodrigues M.E., Henriques M., Oliveira R., Azeredo J.: Glycosylation: impact, control and improvement during therapeutic protein production. Crit. Rev, Biotechnol (2013)

    Google Scholar 

  3. Walsh G.: Biopharmaceutical benchmarks 2010. Nat. Biotechnol. 28, 917–924 (2010)

    Article  CAS  PubMed  Google Scholar 

  4. Beckham G.T., Dai Z., Matthews J.F., Momany M., Payne C.M., Adney W.S., Baker S.E., Himmel M.E.: Harnessing glycosylation to improve cellulase activity. Curr. Opin. Biotechnol. 23, 338–345 (2012)

    Article  CAS  PubMed  Google Scholar 

  5. Campbell C.T., Yarema K.J.: Large-scale approaches for glycobiology. Genome Biol. 6, 236 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schiestl M., Stangler T., Torella C., Cepeljnik T., Toll H., Grau R.: Acceptable changes in quality attributes of glycosylated biopharmaceuticals. Nat. Biotechnol. 29, 310–312 (2011)

    Article  CAS  PubMed  Google Scholar 

  7. Wacker C., Berger C.N., Girard P., Meier R.: Glycosylation profiles of therapeutic antibody pharmaceuticals. Eur. J. Pharm. Biopharm. 79, 503–507 (2011)

    Article  CAS  PubMed  Google Scholar 

  8. Gemmill T.R., Trimble R.B.: Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim. Biophys. Acta - Gen. Subj. 1426, 227–237 (1999)

    Article  CAS  Google Scholar 

  9. Munro S.: What can yeast tell us about N-linked glycosylation in the Golgi apparatus? FEBS Lett. 498, 223–227 (2001)

    Article  CAS  PubMed  Google Scholar 

  10. Ballou C.E.: Isolation, characterization, and properties of Saccharomyces cerevisiae mnn mutants with nonconditional protein glycosylation defects. Methods Enzymol. 185, 440–470 (1990)

    Article  CAS  PubMed  Google Scholar 

  11. Stolz J., Munro S.: The components of the Saccharomyces cerevisiae mannosyltransferase complex M-Pol I have distinct functions in mannan synthesis. J. Biol. Chem. 277, 44801–44808 (2002)

    Article  CAS  PubMed  Google Scholar 

  12. Jungmann J., Rayner J.C., Munro S.: The Saccharomyces cerevisiae protein Mnn10p/Bed1p is a subunit of a Golgi mannosyltransferase complex. J. Biol. Chem. 274, 6579–6585 (1999)

    Article  CAS  PubMed  Google Scholar 

  13. De Pourcq K., De Schutter K., Callewaert N.: Engineering of glycosylation in yeast and other fungi: current state and perspectives. Appl. Microbiol. Biotechnol. 87, 1617–1631 (2010)

    Article  PubMed  Google Scholar 

  14. Parsaie Nasab F., Aebi M., Bernhard G., Frey A.D.: A combined system for engineering glycosylation efficiency and glycan structure in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 79, 997–1007 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mumberg D., Müller R., Funk M.: Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene. 156, 119–122 (1995)

    Article  CAS  PubMed  Google Scholar 

  16. Gietz R.D., Woods R.A.: Yeast transformation by the LiAc/SS Carrier DNA/PEG method. Methods Mol. Biol. 313, 107–120 (2006)

    CAS  PubMed  Google Scholar 

  17. Taxis C., Knop M.: System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae. Biotechniques. 40, 73–78 (2006)

    Article  CAS  PubMed  Google Scholar 

  18. Hegemann J.H., Heick S.B.: Delete and Repeat: A Comprehensive Toolkit for Sequential Gene Knockout in the Budding Yeast Saccharomyces cerevisiae. Methods Mol. Biol. 765, 189–206 (2011)

    Article  CAS  PubMed  Google Scholar 

  19. Schulz B.L., Aebi M.: Analysis of glycosylation site occupancy reveals a role for Ost3p and Ost6p in site-specific N-glycosylation efficiency. Mol. Cell. Proteomics. 8, 357–364 (2009)

    Article  CAS  PubMed  Google Scholar 

  20. Bigge J.C., Patel T.P., Bruce J.A., Goulding P.N., Charles S.M., Parekh R.B.: Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal. Biochem. 230, 229–238 (1995)

    Article  CAS  PubMed  Google Scholar 

  21. Buser R., Lazar Z., Käser S., Künzler M., Aebi M.: Identification, characterization, and biosynthesis of a novel N-glycan modification in the fruiting body of the basidiomycete Coprinopsis cinerea. J. Biol. Chem. 285, 10715–10723 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Strohalm M., Hassman M., Košata B., Kodíček M.: mMass data miner: an open source alternative for mass spectrometric data analysis. Rapid Commun. Mass Spectrom. 22, 905–908 (2008)

    Article  PubMed  Google Scholar 

  23. Cooper C.A., Gasteiger E., Packer N.H.: GlycoMod - a software tool for determining glycosylation compositions from mass spectrometric data. Proteomics. 1, 340–349 (2001)

    Article  CAS  PubMed  Google Scholar 

  24. Narasimhan S., Stanley P., Schachter H.: Control of glycoprotein synthesis. Lectin-resistant mutant containing only one of two distinct N-acetylglucosaminyltransferase activities present in wild type Chinese hamster ovary cells. J. Bacteriol. 252, 3926–3933 (1977)

    CAS  Google Scholar 

  25. Graham T.R., Seeger M., Payne G.S., MacKay V.L., Emr S.D.: Clathrin-dependent localization of α1, 3 mannosyltransferase to the Golgi complex of Saccharomyces cerevisiae. J. Cell Biol. 127, 667–678 (1994)

    Article  CAS  PubMed  Google Scholar 

  26. Cherry J.M., Hong E.L., Amundsen C., Balakrishnan R., Binkley G., Chan E.T., Christie K.R., Costanzo M.C., Dwight S.S., Engel S.R., Fisk D.G., Hirschman J.E., Hitz B.C., Karra K., Krieger C.J., Miyasato S.R., Nash R.S., Park J., Skrzypek M.S., Simison M., Weng S., Wong E.D.: Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic. Acids Res. 40, D700–D705 (2012)

    Article  CAS  Google Scholar 

  27. Milewski S., Gabriel I., Olchowy J.: Enzymes of UDP-GlcNAc biosynthesis in yeast. Yeast. 23, 1–14 (2006)

    Article  CAS  PubMed  Google Scholar 

  28. Yoko-o T., Wiggins C.A.R., Stolz J., Peak-Chew S.Y., Munro S.: An N-acetylglucosaminyltransferase of the Golgi apparatus of the yeast Saccharomyces cerevisiae that can modify N-linked glycans. Glycobiology. 13, 581–589 (2003)

    Article  CAS  PubMed  Google Scholar 

  29. Abeijon C., Robbins P.W., Hirschberg C.B.: Molecular cloning of the Golgi apparatus uridine diphosphate-N-acetylglucosamine transporter from Kluyveromyces lactis. Proc. Natl. Acad. Sci. U. S. A. 93, 5963–5968 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pronk J.T.: Auxotrophic Yeast Strains in Fundamental and Applied Research. Appl. Environ. Microbiol. 68, 2095–2100 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rayner J.C., Munro S.: Identification of the MNN2 and MNN5 mannosyltransferases required for forming and extending the mannose branches of the outer chain mannans of Saccharomyces cerevisiae. J. Biol. Chem. 273, 26836–26843 (1998)

    Article  CAS  PubMed  Google Scholar 

  32. Jungmann J., Munro S.: Multi-protein complexes in the cis Golgi of Saccharomyces cerevisiae with α-1,6-mannosyltransferase activity. EMBO J. 17, 423–434 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Conde R., Cueva R., Pablo G., Polaina J., Larriba G.: A search for hyperglycosylation signals in yeast glycoproteins. J. Biol. Chem. 279, 43789–43798 (2004)

    Article  CAS  PubMed  Google Scholar 

  34. Rodionov D., Romero P., Berghuis A.M., Herscovics A.: Expression and purification of recombinant M-Pol I from Saccharomyces cerevisiae with α-1,6 mannosylpolymerase activity. Protein Expr. Purif. 66, 1–6 (2009)

    Article  CAS  PubMed  Google Scholar 

  35. Striebeck A., Robinson D.A., Schüttelkopf A.W., van Aalten D.M.F.: Yeast Mnn9 is both a priming glycosyltransferase and an allosteric activator of mannan biosynthesis. Open Biol. 3, 130022 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lussier M., Sdicu A.-M., Bussey H.: The KTR and MNN1 mannosyltransferase families of Saccharomyces cerevisiae. Biochim. Biophys. Acta - Gen. Subj. 1426, 323–334 (1999)

    Article  CAS  Google Scholar 

  37. Choi B.-K., Bobrowicz P., Davidson R.C., Hamilton S.R., Kung D.H., Li H., Miele R.G., Nett J.H., Wildt S., Gerngross T.U.: Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc. Natl. Acad. Sci. U. S. A. 100, 5022–5027 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vervecken W., Kaigorodov V., Callewaert N., Geysens S., De Vusser K., Contreras R.: In vivo synthesis of mammalian-like, hybrid-type N-glycans in Pichia pastoris. Appl. Environ. Microbiol. 70, 2639–2646 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hirschberg C.B., Robbins P.W., Abeijon C.: Transporters of nucleotide sugars, ATP, and nucleotide sulfate in the endoplasmic reticulum and golgi apparatus. Annu. Rev. Biochem. 67, 49–69 (1998)

    Article  CAS  PubMed  Google Scholar 

  40. Lopez-Avalos M.D., Uccelletti D., Abeijon C., Hirschberg C.B.: The UDPase activity of the Kluyveromyces lactis Golgi GDPase has a role in uridine nucleotide sugar transport into Golgi vesicles. Glycobiology. 11, 413–422 (2001)

    Article  CAS  PubMed  Google Scholar 

  41. Yanagisawa K., Resnick D., Abeijon C., Robbins P.W., Hirschberg C.B.: A guanosine diphosphatase enriched in Golgi vesicles of Saccharomyces cerevisiae. Purification and characterization. J. Biol. Chem. 265, 19351–19355 (1990)

    CAS  PubMed  Google Scholar 

  42. Gao X.-D.D., Kaigorodov V., Jigami Y.: YND1, a homologue of GDA1, encodes membrane-bound apyrase required for Golgi N- and O-glycosylation in Saccharomyces cerevisiae. J. Biol. Chem. 274, 21450–21456 (1999)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by Aalto University School of Chemical Technology. MA Piirainen is a recipient of a doctoral study grant from the School of Chemical Technology, Aalto University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander D. Frey.

Ethics declarations

Competing Interests

The authors declare that they have no competing interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piirainen, M.A., Boer, H., de Ruijter, J.C. et al. A dual approach for improving homogeneity of a human-type N-glycan structure in Saccharomyces cerevisiae . Glycoconj J 33, 189–199 (2016). https://doi.org/10.1007/s10719-016-9656-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9656-4

Keywords

Navigation