Skip to main content

Delete and Repeat: A Comprehensive Toolkit for Sequential Gene Knockout in the Budding Yeast Saccharomyces cerevisiae

  • Protocol
  • First Online:
Strain Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 765))

Abstract

Gene inactivation is an essential step in the molecular dissection of gene function. In the yeast Saccharomyces cerevisiae, many tools for gene disruption are available. Gene disruption cassettes comprising completely heterologous marker genes flanked by short DNA segments homologous to the regions to the left and right of the gene to be deleted mediate highly efficient one-step gene disruption events. Routinely, in more than 50% of analyzed clones, the marker cassette is integrated in the targeted location. The inclusion of loxP sites flanking the disruption marker gene allows sequence-specific Cre recombinase-mediated marker rescue so that the marker can be reused to disrupt another gene. Here, we describe a comprehensive toolbox for multiple gene disruptions comprising a set of seven heterologous marker genes including four dominant resistance markers for gene disruption, plus a set of Cre expression plasmids carrying eight different selection markers, four of them dominant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rothstein R. (1991) Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol. 194, 281–301.

    Article  PubMed  CAS  Google Scholar 

  2. Johnston M., Riles L. and Hegemann J. H. (2002) Gene disruption. Methods Enzymol. 350, 290–315.

    Article  PubMed  CAS  Google Scholar 

  3. Winzeler E. A., Shoemaker D. D., Astromoff A., Liang H., Anderson K., Andre B., Bangham R., Benito R., Boeke J. D., Bussey H. et al. (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906.

    Google Scholar 

  4. Giaever G., Chu A. M., Ni L., Connelly C., Riles L., Veronneau S., Dow S., Lucau-Danila A., Anderson K., Andre B. et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391.

    Article  PubMed  CAS  Google Scholar 

  5. Hegemann J.H., Gueldener U., Koehler G.J., (2006) Gene disruption in the budding yeast Saccharomyces cerevisiae. In: Xiao W (ed) Yeast Protocols, 2nd edition, Humana Press, New Jersey

    Google Scholar 

  6. Wieczorke R., Krampe S., Weierstall T., Freidel K., Hollenberg C. P. and Boles E. (1999) Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett. 464, 123–128.

    Article  PubMed  CAS  Google Scholar 

  7. Güldener U., Heck S., Fiedler T., Beinhauer J. D. and Hegemann J. H. (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 24, 2519–2524.

    Article  PubMed  Google Scholar 

  8. Gueldener U., Heinisch J., Koehler G. J., Voss D. and Hegemann J. H. (2002) A ­second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res. 30, e23.

    Article  PubMed  CAS  Google Scholar 

  9. Delneri D., Tomlin G.C., Wixon J.L., Hutter A., Sefton M., Louis E.J., Oliver S.G. (2000) Exploring redundancy in the yeast genome: an improved strategy for use of the cre-loxP system. Gene. 252, 127–135.

    Article  PubMed  CAS  Google Scholar 

  10. Carter Z., Delneri D. (2010) New generation of loxP-mutated deletion cassettes for the genetic manipulation of yeast natural isolates. Yeast. 27, 765–775.

    Article  PubMed  CAS  Google Scholar 

  11. Fang F., Salmon K., Shen M.W., Aeling K.A., Ito E., Irwin B., Tran U.P., Hatfield G.W., Da Silva N.A., Sandmeyer S. (2010) A vector set for systematic metabolic engineering in Saccharomyces cerevisiae. Yeast. Sep 10 Epub.

    Google Scholar 

  12. Fickers P., Le Dall M.T., Gaillardin C., Thonart P., Nicaud J.M. (2003) New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica. J Microbiol Methods. 55, 727–737.

    Article  PubMed  CAS  Google Scholar 

  13. Ribeiro O., Gombert A.K., Teixeira J.A., Domingues L.J. (2007) Application of the Cre-loxP system for multiple gene disruption in the yeast Kluyveromyces marxianus. J Biotechnol. 131, 20–26.

    Article  PubMed  CAS  Google Scholar 

  14. Erler A., Maresca M., Fu J., Stewart A.F. (2006) Recombineering reagents for improved inducible expression and selection marker re-use in Schizosaccharomyces pombe. Yeast. 23, 813–823.

    Article  PubMed  CAS  Google Scholar 

  15. Colot H.V., Park G., Turner G.E., Ringelberg C., Crew C.M., Litvinkova L., Weiss R.L., Borkovich K.A., Dunlap J.C. (2006) A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci USA. 103, 10352–10357.

    Article  PubMed  CAS  Google Scholar 

  16. Dennison P.M., Ramsdale M., Manson C.L., Brown A.J. (2005) Gene disruption in Candida albicans using a synthetic, codon-optimised Cre-loxP system. Fungal Genet Biol. 42, 737–748.

    Article  PubMed  CAS  Google Scholar 

  17. Qian W., Song H., Liu Y., Zhang C., Niu Z., Wang H., Qiu B.J. (2009) Improved gene ­disruption method and Cre-loxP mutant ­system for multiple gene disruptions in Hansenula polymorpha. Microbiol Methods. 79, 253–259.

    Article  CAS  Google Scholar 

  18. Iwaki T., Takegawa K. (2004) A set of loxP marker cassettes for Cre-mediated multiple gene disruption in Schizosaccharomyces pombe. Biotechnol Biochem. 68, 545–550.

    Article  CAS  Google Scholar 

  19. Steensma H.Y., Ter Linde J.J. (2001) Plasmids with the Cre-recombinase and the dominant nat marker, suitable for use in prototrophic strains of Saccharomyces cerevisiae and Kluyveromyces lactis. Yeast. 18, 469–472.

    Article  PubMed  CAS  Google Scholar 

  20. Ikushima S., Fujii T., Kobayashi O. (2009) Efficient gene disruption in the high-ploidy yeast Candida utilis using the Cre-loxP system. Biosci Biotechnol Biochem. 73, 879–884.

    Article  PubMed  CAS  Google Scholar 

  21. Patel R.D., Lodge J.K., Baker L.G. (2010) Going green in Cryptococcus neoformans: the recycling of a selectable drug marker.Fungal Genet Biol. 47, 191–198.

    Google Scholar 

  22. Heinisch J.J., Buchwald U., Gottschlich A., Heppeler N., Rodicio R. (2010) A tool kit for molecular genetics of Kluyveromyces lactis comprising a congenic strain series and a set of versatile vectors.FEMS Yeast Res. 10, 333–342

    Google Scholar 

  23. Pluthero F. G. (1993) Rapid purification of high-activity Taq DNA polymerase. Nucleic Acids Res. 21, 4850–4851.

    Article  PubMed  CAS  Google Scholar 

  24. Gietz R. D. Woods R. A. (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 350, 87–96.

    Article  PubMed  CAS  Google Scholar 

  25. Sherman F. (2002) Getting started with yeast. Methods Enzymol. 350, 341.

    Google Scholar 

  26. Entian K.D., Schuster T., Hegemann J.H., Becher D., Feldmann H., Güldener U., Götz R., Hansen M., Hollenberg C.P., Jansen G., Kramer W., Klein S., Kötter P., Kricke J., Launhardt H., Mannhaupt G., Maierl A., Meyer P., Mewes W., Munder T., Niedenthal R.K., Ramezani Rad M., Röhmer A., Römer A., Hinnen A., et al (1999) Functional analysis of 150 deletion mutants in Saccharomyces cerevisiae by a systematic approach. Mol Gen Genet. 262, 683–702.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes H. Hegemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hegemann, J.H., Heick, S.B. (2011). Delete and Repeat: A Comprehensive Toolkit for Sequential Gene Knockout in the Budding Yeast Saccharomyces cerevisiae . In: Williams, J. (eds) Strain Engineering. Methods in Molecular Biology, vol 765. Humana Press. https://doi.org/10.1007/978-1-61779-197-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-197-0_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-196-3

  • Online ISBN: 978-1-61779-197-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics