Advertisement

Glycoconjugate Journal

, Volume 28, Issue 3–4, pp 113–123 | Cite as

N-glycosylation of ovomucin from hen egg white

  • Marina Offengenden
  • Messele A. Fentabil
  • Jianping Wu
Article

Abstract

Ovomucin is a bioactive egg white glycoprotein responsible for the gel properties of fresh egg white and is believed to be involved in egg white thinning, a natural process that occurs during storage. Ovomucin is composed of two subunits: a carbohydrate-rich β-ovomucin with molecular weight of 400–610 KDa and a carbohydrate-poor α-ovomucin with molecular mass of 254 KDa. In addition to limited information on O-linked glycans of ovomucin, there is no study on either the N-glycan structures or the N-glycosylation sites. The purpose of the present study was to characterize the N-glycosylation of ovomucin from fresh eggs using nano LC ESI-MS, MS/MS and MALDI MS. Our results showed the presence of N-linked glycans on both glycoproteins. We found 18 potential N-glycosylation sites in α-ovomucin. 15 sites were glycosylated, one site was found in both glycosylated and non-glycosylated forms and two potential glycosylation sites were found unoccupied. The N-glycans of α-ovomucin found on the glycosylation sites are complex-type structures with bisecting N-acetylglucosamine. MALDI MS of the N-glycans released from α-ovomucin by PNGase F revealed that the most abundant glycan structure is a bisected type of composition GlcNAc6Man3. Two N-glycosylated sites were found in β-ovomucin.

Keywords

Ovomucin Glycosylation Glycans Egg white Mucus Glycoprotein 

Abbreviations

GalNAc

N-acetylgalactosamine

GlcNAc

N-acetylglucosamine

PTS domain

mucin domain

MALDI

matrix-assisted laser desorption/ionization

TOF

time of flight

MS

mass spectrometry

LC

liquid chromatography

ESI

electro-spray ionization

VWF

von-Willebrand factor

PNGase F

peptide N-glycosidase

Hex

hexose

HexNAc

N-acetylhexosamine

CK

cystine knot

Notes

Acknowledgements

This work was supported by grants from Natural Sciences and Engineering Research Council of Canada (NSERC) and Alberta Livestock Meat Agency Inc. (ALMA) to J. Wu.

References

  1. 1.
    Stevens, L.: Egg proteins: what are their functions? Sci. Prog. 79(Pt 1), 65–87 (1996)PubMedGoogle Scholar
  2. 2.
    Burley, R.W., Vadehra, D.V.: The albumen: chemistry. In: Burley, R.W., Vadehra, D.V. (eds.) The Avian Egg: Chemistry and Biology, pp. 65–128. Wiley, New York (1989)Google Scholar
  3. 3.
    Brooks, J., Hale, H.P.: The mechanical properties of the thick white of the hen's egg. Biochim. Biophys. Acta 32, 237–250 (1959)PubMedCrossRefGoogle Scholar
  4. 4.
    Omana, D.A., Wang, J., Wu, J.: Ovomucin - a glycoprotein with promising potential. Trends Food Sci. Technol. 21, 455–463 (2010)CrossRefGoogle Scholar
  5. 5.
    Hiidenhovi, J.O.: In: Huopalahti, R., Lopez-Fandino, R., Anton, M., Schade, R. (eds.) Bioactive Egg Compounds, pp. 61–68. Springer, Berlin; New York (2007)Google Scholar
  6. 6.
    Mine, Y., D'Silva, I.: Bioactive components in egg white. In: Mine, Y. (ed.) Egg Bioscience and Biotechnology, pp. 141–184. Wiley-Interscience, Hoboken (2008)CrossRefGoogle Scholar
  7. 7.
    Robinson, D.S., Monsey, J.B.: Studies on the composition of egg-white ovomucin. Biochem. J. 121, 537–547 (1971)PubMedGoogle Scholar
  8. 8.
    Rabouille, C., Aon, M.A., Thomas, D.: Interactions involved in ovomucin gel-forming properties: a rheological-biochemical approach. Arch. Biochem. Biophys. 270, 495–503 (1989)PubMedCrossRefGoogle Scholar
  9. 9.
    Watanabe, K., Shimoyamada, M., Onizuka, T., Akiyama, H., Niwa, M., Ido, T., Tsuge, Y.: Amino acid sequence of α-subunit in hen egg white ovomucin deduced from cloned cDNA. DNA Seq. 15, 251–261 (2004)PubMedGoogle Scholar
  10. 10.
    Lang, T., Hansson, G.C., Samuelsson, T.: An inventory of mucin genes in the chicken genome shows that the mucin domain of Muc13 is encoded by multiple exons and that ovomucin is part of a locus of related gel-forming mucins. BMC Genomics. 7 (2006)Google Scholar
  11. 11.
    Perez-Vilar, J.: Gastrointestinal mucus gel barrier. In: Bernkop-Schnürch, A. (ed.) Oral Delivery of Macromolecular Drugs: Barriers, Strategies and Future Trends, pp. 21–48. Springer, Dordrecht [The Netherlands], New York (2009)CrossRefGoogle Scholar
  12. 12.
    Bansil, R., Turner, B.S.: Mucin structure, aggregation, physiological functions and biomedical applications. Curr. Opin. Colloid. Interface Sci. 11, 164–170 (2006)CrossRefGoogle Scholar
  13. 13.
    Dekker, J., Rossen, J.W.A., Büller, H.A., Einerhand, A.W.C.: The MUC family: an obituary. Trends Biochem. Sci. 27, 126 (2002)PubMedCrossRefGoogle Scholar
  14. 14.
    Strous, G.J., Dekker, J.: Mucin-type glycoproteins. Crit. Rev. Biochem. Mol. Biol. 27, 57–92 (1992)PubMedCrossRefGoogle Scholar
  15. 15.
    Bell, S.L., Xu, G., Khatri, I.A., Wang, R., Rahman, S., Forstner, J.F.: N-linked oligosaccharides play a role in disulphide-dependent dimerization of intestinal mucin Muc2. Biochem. J. 373, 893–900 (2003)PubMedCrossRefGoogle Scholar
  16. 16.
    Strecker, G., Wieruszeski, J., Martel, C., Montreuil, J.: Determination of the structure of sulfated tetra- and pentasaccharides obtained by alkaline borohydride degradation of hen ovomucin. A fast atom bombardment-mass spectrometric and 1H-NMR spectroscopic study. Glycocnj. J 4, 329–337 (1987)CrossRefGoogle Scholar
  17. 17.
    Strecker, G., Wieruszeski, J.-M., Martel, C., Montreuil, J.: Complete 1H- and 13C-N.M.R. assignments for two sulphated oligosaccharide alditols of hen ovomucin. Carbohydr. Res. 185, 1–13 (1989)PubMedCrossRefGoogle Scholar
  18. 18.
    Strecker, G., Wieruszeski, J.-M., Cuvillier, O., Michalski, J.C., Montreuil, J.: 1H and 13C-NMR assignments for sialylated oligosaccharide-alditols related to mucins. Study of thirteen components from hen ovomucin and swallow nest mucin. Biochimie 74, 39–52 (1992)PubMedCrossRefGoogle Scholar
  19. 19.
    Kato, A., Hirata, S., Kobayashi, K.: Structure of the sulfated oligosaccaride chain of ovomucin. Agr. Biol. Chem. 42, 1025–1029 (1978)Google Scholar
  20. 20.
    Sellers, L.A., Allen, A., Morris, E.R., Ross-Murphy, S.: Mucus glycoprotein gels. Role of glycoprotein polymeric structure and carbohydrate side-chains in gel-formation. Carbohydr. Res. 178, 93–110 (1988)PubMedCrossRefGoogle Scholar
  21. 21.
    Varki, A. (ed.): Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1999)Google Scholar
  22. 22.
    Tai, T., Yamashita, K., Ogata-Arakawa, M., Koide, N., Muramatsu, T., Iwashita, S., Inoue, Y., Kobata, A.: Structural studies of two ovalbumin glycopeptides in relation to the endo-β-N-acetylglucosaminidase specificity. J. Biol. Chem. 250, 8569–8575 (1975)PubMedGoogle Scholar
  23. 23.
    Yamashita, K., Tachibana, Y., Kobata, A.: The structures of the galactose-containing sugar chains of ovalbumin. J. Biol. Chem. 253, 3862–3869 (1978)PubMedGoogle Scholar
  24. 24.
    Harvey, D.J., Wing, D.R., Kuster, B., Wilson, I.B.H.: Composition of N-linked carbohydrates from ovalbumin and co-purified glycoproteins. J. Am. Soc. Mass Spectrom. 11, 564–571 (2000)PubMedCrossRefGoogle Scholar
  25. 25.
    Yamashita, K., Kamerling, J.P., Kobata, A.: Structural study of the carbohydrate moiety of hen ovomucoid. Occurrence of a series of pentaantennary complex-type asparagine-linked sugar chains. J. Biol. Chem. 257, 12809–12814 (1982)PubMedGoogle Scholar
  26. 26.
    Yamashita, K., Kamerling, J.P., Kobata, A.: Structural studies of the sugar chains of hen ovomucoid. Evidence indicating that they are formed mainly by the alternate biosynthetic pathway of asparagine-linked sugar chains. J. Biol. Chem. 258, 3099–3106 (1983)PubMedGoogle Scholar
  27. 27.
    Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970)PubMedCrossRefGoogle Scholar
  28. 28.
    Towndrow, K.M., Jia, Z., Lo, H.H., Person, M.D., Monks, T.J., Lau, S.S.: 11-Deoxy,16,16-dimethyl prostaglandin E2 induces specific proteins in association with its ability to protect against oxidative stress. Chem. Res. Toxicol. 16, 312–319 (2003)PubMedCrossRefGoogle Scholar
  29. 29.
    Shevchenko, A., Wilm, M., Vorm, O., Mann, M.: Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996)PubMedCrossRefGoogle Scholar
  30. 30.
    Dell, A., Khoo, K.-H., Panico, M., McDowell, R.A., Etienne, A.T., Reason, A.J., Morris, H.R.: FAB-MS and ES-MS of glycoproteins. In: Fukuda, M., Kobata, A. (eds.) Glycobiology: A Practical Approach, pp. 187–222. IRL Press at Oxford University Press, Oxford, New York (1993)Google Scholar
  31. 31.
    Sigrist, C.J.A., Cerutti, L., de Castro, E., Langendijk-Genevaux, P., Bulliard, V., Bairoch, A., Hulo, N.: PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res. 38, D161–D166 (2010)PubMedCrossRefGoogle Scholar
  32. 32.
    de Castro, E., Sigrist, C.J.A., Gattiker, A., Bulliard, V., Langendijk-Genevaux, P., Gasteiger, E., Bairoch, A., Hulo, N.: ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 34, W362–W365 (2006)PubMedCrossRefGoogle Scholar
  33. 33.
    Medzihradszky, K.F.: Characterization of protein N-glycosylation. Methods Enzymol. 405, 116–138 (2006)Google Scholar
  34. 34.
    Spik, G., Coddeville, B., Montreuil, J.: Comparative study of the primary structures of sero-, lacto- and ovotransferrin glycans from different species. Biochimie 70, 1459–1469 (1988)PubMedCrossRefGoogle Scholar
  35. 35.
    Itoh, T., Miyazaki, J., Sugawara, H., Adachi, S.: Studies on the characterization of ovomucin and chalaza of the hen's egg. J. Food Sci. 52, 1518–1521 (1987)CrossRefGoogle Scholar
  36. 36.
    Hayakawa, S., Sato, Y.: Physicochemical identity of alpha ovomucins or beta ovomucins obtained from the sonicated insoluble and soluble ovomucins. Agric. Biol. Chem. 1185–1191 (1977)Google Scholar
  37. 37.
    Tsuge, Y., Shimoyamada, M., Watanabe, K.: Structural features of newcastle disease virus- and anti-ovomucin antibody-binding glycopeptides from pronase-treated ovomucin. J. Agric. Food Chem. 45, 2393–2398 (1997)CrossRefGoogle Scholar
  38. 38.
    Hayakawa, S., Sato, Y.: Subunit structures of sonicated α and β-ovomucin and their molecular weights estimated by sedimentation equilibrium. Agric. Biol. Chem. 42, 957–961 (1978)Google Scholar
  39. 39.
    Hiidenhovi, J., Aro, H.S., Kankare, V.: Separation of ovomucin subunits by gel filtration: Enhanced resolution of subunits by using a dual-column system. J. Agric. Food Chem. 47, 1004–1008 (1999)PubMedCrossRefGoogle Scholar
  40. 40.
    Mann, K.: The chicken egg white proteome. Proteomics 7, 3558–3568 (2007)PubMedCrossRefGoogle Scholar
  41. 41.
    Helenius, A., Aebi, M.: Intracellular functions of N-linked glycans. Science 291, 2364 (2001)PubMedCrossRefGoogle Scholar
  42. 42.
    Dwek, R.A.: Glycobiology: toward understanding the function of sugars. Chem. Rev. 96, 683–720 (1996)PubMedCrossRefGoogle Scholar
  43. 43.
    Perez-Vilar, J., Hill, R.L.: The structure and assembly of secreted mucins. J. Biol. Chem. 274, 31751–31754 (1999)PubMedCrossRefGoogle Scholar
  44. 44.
    Rudd, R.M., Dwek, R.A.: Glycosylation: heterogeneity and the 3D structure of proteins. Crit. Rev. Biochem. Mol. Biol. 32, 1–100 (1997)PubMedCrossRefGoogle Scholar
  45. 45.
    McKinnon, T.A.J., Goode, E.C., Birdsey, G.M., Nowak, A.A., Chan, A.C.K., Lane, D.A., Laffan, M.A.: Specific N-linked glycosylation sites modulate synthesis and secretion of von Willebrand factor. Blood 116, 640–648 (2010)PubMedCrossRefGoogle Scholar
  46. 46.
    Gupta, G., Surolia, A., Mitra, N., Sinha, S.: Probing into the role of conserved N-glycosylation sites in the Tyrosinase glycoprotein family. Glycoconj. J. 26, 691–695 (2009)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Marina Offengenden
    • 1
  • Messele A. Fentabil
    • 1
  • Jianping Wu
    • 1
  1. 1.Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonCanada

Personalised recommendations