Glycoconjugate Journal

, Volume 25, Issue 1, pp 15–25 | Cite as

Quantifiable fluorescent glycan microarrays

  • Xuezheng Song
  • Baoyun Xia
  • Yi Lasanajak
  • David F. Smith
  • Richard D. CummingsEmail author


A glycan microarray was developed by using 2,6-diaminopyridine (DAP) as a fluorescent linker and printing of the glycan-DAP conjugates (GDAPs) on epoxy-activated glass slides. Importantly, all coupled GDAPs showed a detectable level of concentration-dependent GDAP fluorescence under blue laser excitation (495 nm) that can be used for both grid location and on-slide quantification. A glycan array including a large number of GDAP’s derived from natural and commercially available free glycans was constructed and glycan interactions with various plant lectins were investigated. In addition, binding parameters of lectins to glycans were obtained by varying both the amount of GDAPs on the array and the lectin concentration in analyses. These data demonstrate the general utility of GDAP microarrays for functional glycomic analyses and for determining binding parameters of glycan binding proteins (GBPs).


Carbohydrate Glycan conjugate Glycomics Microarray Fluorescence 





glycan-DAP conjugate


high performance liquid chromatography




relative fluorescence unit


glycan binding protein


Ricinus communis agglutinin I


Aleuria aurantia lectin


concanavalin A


Sambucus nigra agglutinin


Lotus tetragonolobus lectin




lacto-N-fucopentaose III


fluorescein isothiocyanate



This work was supported in part by a Bridge Grant to R.D.C. from the Consortium for Functional Glycomics under NIH Grant GM62116.


  1. 1.
    Baenziger, J.U., Fiete, D.: Structural determinants of Ricinus communis agglutinin and toxin specificity for oligosaccharides. J. Biol. Chem. 254, 9795–9799 (1979)PubMedGoogle Scholar
  2. 2.
    Blixt, O., Head, S., Mondala, T., Scanlan, C., Huflejt, M.E., Alvarez, R., Bryan, M.C., Fazio, F., Calarese, D., Stevens, J., Razi, N., Stevens, D.J., Skehel, J.J., van Die, I., Burton, D.R., Wilson, I.A., Cummings, R., Bovin, N., Wong, C.-H., Paulson, J.C.: Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl. Acad. Sci. U. S. A. 101, 17033–17038 (2004)PubMedCrossRefGoogle Scholar
  3. 3.
    Bohorov, O., Andersson-Sand, H., Hoffmann, J., Blixt, O.: Arraying glycomics: a novel bi-functional spacer for one-step microscale derivatization of free reducing glycans. Glycobiology. 16, 21C–27C (2006)PubMedCrossRefGoogle Scholar
  4. 4.
    Cummings, R.D.: Use of lectins in analysis of glycoconjugates. Methods Enzymol. 230, 66–86 (1994)PubMedGoogle Scholar
  5. 5.
    de Paz, J.L., Seeberger, P.H.: Recent advances in carbohydrate microarrays. QSAR Comb. Sci. 25, 1027–1032 (2006)CrossRefGoogle Scholar
  6. 6.
    Debray, H., Montreuil, J.: Aleuria aurantia agglutinin. A new isolation procedure and further study of its specificity towards various glycopeptides and oligosaccharides. Carbohydr. Res. 185, 15–26 (1989)PubMedCrossRefGoogle Scholar
  7. 7.
    Drickamer, K., Taylor, M.E.: Glycan arrays for functional glycomics. 3, reviews1034.1–reviews1034.4 (2002)Google Scholar
  8. 8.
    Feizi, T., Chai, W.: Innovation: Oligosaccharide microarrays to decipher the glyco code. Nat. Rev. Mol. Cell Biol. 5, 582–588 (2004)PubMedCrossRefGoogle Scholar
  9. 9.
    Feizi, T., Fazio, F., Chai, W., Wong, C.H.: Carbohydrate microarrays—a new set of technologies at the frontiers of glycomics. Curr. Opin. Struct. Biol. 13, 637–645 (2003)PubMedCrossRefGoogle Scholar
  10. 10.
    Fukuda, M.: Roles of mucin-type O-glycans in cell adhesion. Biochim. Biophys. Acta (G). 1573, 394–405 (2002)Google Scholar
  11. 11.
    Hirabayashi, J.: Oligosaccharide microarrays for glycomics. Trends Biotechnol. 21, 141–143; discussion 143 (2003)PubMedCrossRefGoogle Scholar
  12. 12.
    Kochibe, N., Furukawa, K.: Purification and properties of a novel fucose-specific hemagglutinin of Aleuria aurantia. Biochemistry. 19, 2841–2846 (1980)PubMedCrossRefGoogle Scholar
  13. 13.
    Lowe, J.B.: Glycan-dependent leukocyte adhesion and recruitment in inflammation. Curr. Opin. Cell Biol. 15, 531–538 (2003)PubMedCrossRefGoogle Scholar
  14. 14.
    Mahajan, S., Kumar, P., Gupta, K.C.: Oligonucleotide microarrays: immobilization of phosphorylated oligonucleotides on epoxylated surface. Bioconjug. Chem. 17, 1184–1189 (2006)PubMedCrossRefGoogle Scholar
  15. 15.
    Merkle, R.K., Cummings, R.D.: Lectin affinity chromatography of glycopeptides. Methods Enzymol. 138, 232–259 (1987)PubMedCrossRefGoogle Scholar
  16. 16.
    Nicolson, G.L., Blaustein, J., Etzler, M.E.: Characterization of two plant lectins from Ricinus communis and their quantitative interaction with a murine lymphoma. Biochemistry. 13, 196–204 (1974)PubMedCrossRefGoogle Scholar
  17. 17.
    Ohtsubo, K., Marth, J.D.: Glycosylation in cellular mechanisms of health and disease. Cell. 126, 855–867 (2006)PubMedCrossRefGoogle Scholar
  18. 18.
    Paulson, J.C., Blixt, O., Collins, B.E.: Sweet spots in functional glycomics. Nat. Chem. Biol. 2, 238–248 (2006)PubMedCrossRefGoogle Scholar
  19. 19.
    Piehler, J., Brecht, A., Valiokas, R., Liedberg, B., Gauglitz, G.: A high-density poly(ethylene glycol) polymer brush for immobilization on glass-type surfaces. Biosens. Bioelectron. 15, 473–481 (2000)PubMedCrossRefGoogle Scholar
  20. 20.
    Preininger, C., Sauer, U., Dayteg, J., Pichler, R.: Optimizing processing parameters for signal enhancement of oligonucleotide and protein arrays on ARChip epoxy. Bioelectrochemistry. 67, 155–162 (2005)PubMedCrossRefGoogle Scholar
  21. 21.
    Raman, R., Raguram, S., Venkataraman, G., Paulson, J.C., Sasisekharan, R.: Glycomics: an integrated systems approach to structure–function relationships of glycans. Nat. Methods. 2, 817–824 (2005)PubMedCrossRefGoogle Scholar
  22. 22.
    Shriver, Z., Raguram, S., Sasisekharan, R.: Glycomics: a pathway to a class of new and improved therapeutics. Nat. Rev. Drug Discov. 3, 863–873 (2004)PubMedCrossRefGoogle Scholar
  23. 23.
    Stevens, J., Blixt, O., Paulson, J.C., Wilson, I.A.: Glycan microarray technologies: tools to survey host specificity of influenza viruses. Nat. Rev. Microbiol. 4, 857–864 (2006)PubMedCrossRefGoogle Scholar
  24. 24.
    Timmer, M.S., Stocker, B.L., Seeberger, P.H.: Probing glycomics. Curr. Opin. Chem. Biol. 11, 59–65 (2007)PubMedCrossRefGoogle Scholar
  25. 25.
    Xia, B., Kawar, Z.S., Ju, T., Alvarez, R.A., Sachdev, G.P., Cummings, R.D.: Versatile fluorescent derivatization of glycans for glycomic analysis. Nat. Methods. 2, 845–850 (2005)PubMedCrossRefGoogle Scholar
  26. 26.
    Yamamoto, K., Tsuji, T., Osawa, T.: Analysis of asparagine-linked oligosaccharides by sequential lectin-affinity chromatography. Methods Mol. Biol. 76, 35–51 (1998)PubMedGoogle Scholar
  27. 27.
    Yamashita, K., Kochibe, N., Ohkura, T., Ueda, I., Kobata, A.: Fractionation of L-fucose-containing oligosaccharides on immobilized Aleuria aurantia lectin. J. Biol. Chem. 260, 4688–4693 (1985)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Xuezheng Song
    • 1
  • Baoyun Xia
    • 1
  • Yi Lasanajak
    • 1
  • David F. Smith
    • 1
  • Richard D. Cummings
    • 1
    Email author
  1. 1.Department of BiochemistryEmory University School of MedicineAtlantaUSA

Personalised recommendations