Skip to main content

Evaluation of Glycan-Binding Specificity by Glycoconjugate Microarray with an Evanescent-Field Fluorescence Detection System

  • Protocol
  • First Online:
Glycan Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2460))

Abstract

Glycan microarray is an essential tool to study glycan-binding proteins called lectins. Using glycan microarrays, glycan-binding specificity can be analyzed by incubation with an array in which a series of glycans are immobilized. Various research groups in the world have developed glycan microarray. Among them, our glycan microarray has two unique points: one is the incorporation of the evanescent-field fluorescence detection system, and another is the use of multivalent glycopolymers. These two unique properties allow high-sensitive detection from a relatively limited amount of only nanograms of lectins, which could even be applied in crude samples such as cell lysates and cell culture media. Thus, this system is suitable for the first screening of lectins, lectin-like molecules, lectin candidates, and lectin mutants. Here we describe the protocols to analyze glycan-binding specificity of lectins using our glycan microarray system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boyd WC, Shapleigh E (1954) Specific precipitating activity of plant agglutinins (lectins). Science 119:419. https://doi.org/10.1126/science.119.3091.419

    Article  CAS  PubMed  Google Scholar 

  2. Blixt O, Collins BE, van den Nieuwenhof IM et al (2003) Sialoside specificity of the siglec family assessed using novel multivalent probes: identification of potent inhibitors of myelin-associated glycoprotein. J Biol Chem 278:31007–31019. https://doi.org/10.1074/jbc.M304331200

    Article  CAS  PubMed  Google Scholar 

  3. Mega T, Hase S (1991) Determination of lectin-sugar binding constants by microequilibrium dialysis coupled with high performance liquid chromatography. J Biochem 109:600–603

    Article  CAS  Google Scholar 

  4. Shinohara Y, Kim F, Shimizu M et al (1994) Kinetic measurement of the interaction between an oligosaccharide and lectins by a biosensor based on surface plasmon resonance. Eur J Biochem 223:189–194. https://doi.org/10.1111/j.1432-1033.1994.tb18982.x

    Article  CAS  PubMed  Google Scholar 

  5. Dam TK, Gerken TA, Cavada BS et al (2007) Binding studies of alpha-GalNAc-specific lectins to the alpha-GalNAc (Tn-antigen) form of porcine submaxillary mucin and its smaller fragments. J Biol Chem 282:28256–28263

    Article  CAS  Google Scholar 

  6. Tateno H, Nakamura-Tsuruta S, Hirabayashi J (2007) Frontal affinity chromatography: sugar-protein interactions. Nat Protoc 2:2529–2537. https://doi.org/10.1038/nprot.2007.357

    Article  CAS  PubMed  Google Scholar 

  7. Blixt O, Head S, Mondala T et al (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc Natl Acad Sci U S A 101:17033 LP–17038 LP. https://doi.org/10.1073/pnas.0407902101

    Article  CAS  Google Scholar 

  8. Yan M, Zhu Y, Liu X et al (2019) Next-generation glycan microarray enabled by DNA-coded glycan library and next-generation sequencing technology. Anal Chem 91:9221–9228. https://doi.org/10.1021/acs.analchem.9b01988

    Article  CAS  PubMed  Google Scholar 

  9. Paulson JC, Blixt O, Collins BE (2006) Sweet spots in functional glycomics. Nat Chem Biol 2:238–248. https://doi.org/10.1038/nchembio785

    Article  CAS  PubMed  Google Scholar 

  10. Tateno H, Mori A, Uchiyama N et al (2008) Glycoconjugate microarray based on an evanescent-field fluorescence-assisted detection principle for investigation of glycan-binding proteins. Glycobiology 18:789–798. https://doi.org/10.1093/glycob/cwn068

    Article  CAS  PubMed  Google Scholar 

  11. Hu D, Tateno H, Sato T et al (2013) Tailoring GalNAcα1-3Galβ-specific lectins from a multi-specific fungal galectin: dramatic change of carbohydrate specificity by a single amino-acid substitution. Biochem J 453:261–270. https://doi.org/10.1042/BJ20121901

    Article  CAS  PubMed  Google Scholar 

  12. Kanemaru K, Noguchi E, Tahara-Hanaoka S et al (2019) Clec10a regulates mite-induced dermatitis. Sci Immunol 4:eaax6908. https://doi.org/10.1126/sciimmunol.aax6908

    Article  CAS  PubMed  Google Scholar 

  13. Ogawa T, Sato R, Naganuma T et al (2019) Glycan binding profiling of jacalin-related lectins from the Pteria penguin pearl shell. Int J Mol Sci 20:1–14. https://doi.org/10.3390/ijms20184629

    Article  CAS  Google Scholar 

  14. Sakai K, Hiemori K, Tateno H et al (2018) Fucose-specific lectin of Aspergillus fumigatus: binding properties and effects on immune response stimulation. Med Mycol 57:71–83. https://doi.org/10.1093/mmy/myx163

    Article  CAS  Google Scholar 

  15. Unno H, Nakamura A, Mori S et al (2018) Identification, characterization, and X-ray crystallographic analysis of a novel type of lectin AJLec from the sea anemone Anthopleura japonica. Sci Rep 8:11516. https://doi.org/10.1038/s41598-018-29498-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sato T, Tateno H, Kaji H et al (2017) Engineering of recombinant Wisteria floribunda agglutinin specifically binding to GalNAcβ1,4GlcNAc (LacdiNAc). Glycobiology 27:743–754. https://doi.org/10.1093/glycob/cwx038

    Article  CAS  PubMed  Google Scholar 

  17. Itakura Y, Nakamura-Tsuruta S, Kominami J et al (2017) Sugar-binding profiles of chitin-binding lectins from the hevein family: a comprehensive study. Int J Mol Sci 18:1160. https://doi.org/10.3390/ijms18061160

    Article  CAS  PubMed Central  Google Scholar 

  18. Dion J, Advedissian T, Storozhylova N et al (2017) Development of a sensitive microarray platform for the ranking of galectin inhibitors: identification of a selective Galectin-3 inhibitor. Chembiochem 18:2428–2440. https://doi.org/10.1002/cbic.201700544

    Article  CAS  PubMed  Google Scholar 

  19. Shimokawa M, Haraguchi T, Minami Y et al (2016) Two carbohydrate recognizing domains from Cycas revoluta leaf lectin show the distinct sugar-binding specificity—a unique mannooligosaccharide recognition by N-terminal domain. J Biochem 160:27–35. https://doi.org/10.1093/jb/mvw011

    Article  CAS  PubMed  Google Scholar 

  20. Unno H, Matsuyama K, Tsuji Y et al (2016) Identification, characterization and X-ray crystallographic analysis of a novel type of mannose-specific lectin CGL1 from the Pacific oyster Crassostrea gigas. Sci Rep 6:29135. https://doi.org/10.1038/srep29135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kenmochi E, Kabir SR, Ogawa T et al (2015) Isolation and biochemical characterization of Apios tuber lectin. Molecules 20:987–1002. https://doi.org/10.3390/molecules20010987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Soga K, Abo H, Qin SY et al (2015) Mammalian cell surface display as a novel method for developing engineered lectins with novel characteristics. Biomol Ther 5:1540–1562. https://doi.org/10.3390/biom5031540

    Article  CAS  Google Scholar 

  23. Shimokawa M, Nsimba-Lubaki SM, Hayashi N et al (2014) Two jacalin-related lectins from seeds of the African breadfruit (Treculia africana L.). Biosci Biotechnol Biochem 78:2036–2044. https://doi.org/10.1080/09168451.2014.948376

    Article  CAS  PubMed  Google Scholar 

  24. Tsutsui S, Dotsuta Y, Ono A et al (2015) A C-type lectin isolated from the skin of Japanese bullhead shark (Heterodontus japonicus) binds a remarkably broad range of sugars and induces blood coagulation. J Biochem 157:345–356. https://doi.org/10.1093/jb/mvu080

    Article  CAS  PubMed  Google Scholar 

  25. Shimokawa M, Fukudome A, Yamashita R et al (2012) Characterization and cloning of GNA-like lectin from the mushroom Marasmius oreades. Glycoconj J 29:457–465. https://doi.org/10.1007/s10719-012-9401-6

    Article  CAS  PubMed  Google Scholar 

  26. Hu D, Tateno H, Kuno A et al (2012) Directed evolution of lectins with sugar-binding specificity for 6-sulfo-galactose. J Biol Chem 287:20313–20320. https://doi.org/10.1074/jbc.m112.351965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Takahara K, Arita T, Tokieda S et al (2012) Difference in Fine Specificity to Polysaccharides of Candida albicans Mannoprotein between Mouse SIGNR1 and Human DC-SIGN. Infect Immun 80:1699 LP–1706 LP. https://doi.org/10.1128/IAI.06308-11

    Article  CAS  Google Scholar 

  28. Tateno H, Toyota M, Saito S et al (2011) Glycome diagnosis of human induced pluripotent stem cells using lectin microarray. J Biol Chem 286:20345–20353. https://doi.org/10.1074/jbc.M111.231274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yabe R, Tateno H, Hirabayashi J (2010) Frontal affinity chromatography analysis of constructs of DC-SIGN, DC-SIGNR and LSECtin extend evidence for affinity to agalactosylated N-glycans. FEBS J 277:4010–4026. https://doi.org/10.1111/j.1742-4658.2010.07792.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tateno H, Ohnishi K, Yabe R et al (2010) Dual specificity of Langerin to sulfated and mannosylated glycans via a single C-type carbohydrate recognition domain. J Biol Chem 285:6390–6400. https://doi.org/10.1074/jbc.M109.041863

    Article  CAS  PubMed  Google Scholar 

  31. Mitsunaga K, Harada-Itadani J, Shikanai T et al (2009) Human C21orf63 is a heparin-binding protein. J Biochem 146:369–373. https://doi.org/10.1093/jb/mvp079

    Article  CAS  PubMed  Google Scholar 

  32. Yamasaki S, Matsumoto M, Takeuchi O et al (2009) C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia. Proc Natl Acad Sci U S A 106:1897 LP–1902 LP. https://doi.org/10.1073/pnas.0805177106

    Article  Google Scholar 

  33. Takeuchi T, Sennari R, Sugiura K et al (2008) A C-type lectin of Caenorhabditis elegans: its sugar-binding property revealed by glycoconjugate microarray analysis. Biochem Biophys Res Commun 377:303–306. https://doi.org/10.1016/j.bbrc.2008.10.001

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Tateno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Oinam, L., Tateno, H. (2022). Evaluation of Glycan-Binding Specificity by Glycoconjugate Microarray with an Evanescent-Field Fluorescence Detection System. In: Kilcoyne, M., Gerlach, J.Q. (eds) Glycan Microarrays. Methods in Molecular Biology, vol 2460. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2148-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2148-6_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2147-9

  • Online ISBN: 978-1-0716-2148-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics