Skip to main content
Log in

High-Temperature Ceramic Composites (SiC/SiCw)

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

The prospects for using ceramic composite materials in place of metallic materials in heat-loaded units in advanced aircraft are examined. The manufacture of silicon carbide based ceramic composite materials, reinforced with filamentary crystals (whiskers), by means of hot-pressing and spark plasma sintering using oxide and nitride sintering additives was investigated. A complex of physical-mechanical and thermal properties of composites was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. E. N. Kablov, “Innovative R&D at FSUE VIAM SSC RF on the implementation of strategic directions of development of materials and their processing technologies for the period to 2030,” Aviats. Mater. Tekhnol., No. 1, 3 – 33 (2015); DOI: https://doi.org/10.18577/2071-9140-2015-0-1-3-33.

  2. E. N. Kablov, “Next-generation materials — the basis of innovation, technological leadership and national security of Russia,” Intellekt Tekhnol., No. 2 (14), 16 – 21 (2016).

  3. D. V. Grashchenkov, “A development strategy for non-metallic materials, metal composite materials, and heat-shielding,” Aviats. Mater. Tekhnol., No. S, 264 – 271 (2017); DOI: https://doi.org/10.8577/2071-9140-2017-0-S-264-271.

  4. E. N. Kablov, B. E. Zhestkov, D. V. Grashchenkov, et al., “Investigation of the oxidation resistance of a high-temperature coating on a SiC material under the action of a high-enthalpy flow,” Teplofiz. Vys. Temp., 55(6), 704 – 711 (2017).

    Google Scholar 

  5. V. A. Prokofiev, O. Yu. Sorokin, M. L. Vaganova, et al., “Hightemperature material with a gradient structure obtained by liquid-phase melt infiltration,” Tr. VIAM: Elektron. Nauch.-Tekh. Zh., No. 11, Art. 06 (2018); URL: http://www.viam-works.ru(access date: 07/01/2019); DOI: https://doi.org/10.18577/2307-6046-2018-0-11-45-53.

  6. B. Yu. Kuznetsov, O. Yu. Sorokin, M. L. Vaganova, et al., “Synthesis of model high-temperature ceramic matrices by spark plasma sintering and study of their properties for obtaining composite materials,” Aviats. Mater. Tekhnol., No. 4, 37 – 44 (2018); DOI: 10.18577/2071-9140-2018-0-4-37-44.

  7. O. Yu. Sorokin, D. V. Grashchenkov, S. St. Solntsev, and S. A. Evdokimov, “Ceramic composite materials with high oxidative stability for promising aircraft,” Tr. VIAM: Elektron. Nauch.-Tekhn. Zh., No. 6, Art. 08 (2014); URL: http://www.viam-works.ru (access date: 07/04/2019); DOI: https://doi.org/10.18577/2307-6046-2014-0-6-8-8.

  8. S. A. Evdokimov, N. E. Schegoleva, and O. Yu. Sorokin, “Ceramic materials in aircraft engine manufacturing (review),” Tr. VIAM: Elektron. Nauch.-Tekhn. Zh., No. 12, Art. 06 (2018); URL: http://www.viam-works.ru (accessed: July 1, 2019); DOI: https://doi.org/10.18577/2307-6046-2018-0-12-54-61.

  9. D. V. Grashchenkov, O. Y. Sorokin, Y. E. Lebedeva, and M. L. Vaganova, “Specific features of sintering of HfB2-based refractory ceramic by hybrid spark plasma sintering,” Russ. J. Appl. Chem., 88(3), 386 – 393 (2015).

    Article  CAS  Google Scholar 

  10. Pat. US 5990025 À, Ceramic Matrix Composite and Method of Manufacturing the Same (1999).

  11. V. G. Sevastyanov, E. P. Simonenko, N. P. Simonenko, et al., “Production of silicon carbide filamentary crystals by the sol-gel method in the interior of SiC-ceramic,” Kompozity Nanostrukt., 6(4), 198 – 211 (2014).

    CAS  Google Scholar 

  12. A. Noviyanto, Y. Dang-Hyok, and H. Young-Hwan, “Characteristics of SiCf /SiC hybrid composites fabricated by hot pressing and spark plasma sintering,” Adv. Appl. Ceram., 110(7), 375 – 382 (2011); DOI: https://doi.org/10.1179/1743676111Y.0000000025.

    Article  CAS  Google Scholar 

  13. Pat. US 6291058 B1, Composite Material with Ceramic Matrix and SiC Fiber reinforcement, Method for Making Same (2001).

  14. Pat. US 20110200748 A1, Method for Producing Parts Made of a Thermostructural Composite Material (2001).

  15. W. Krenkel and F. Berndt, “C/C–SiC composites for space applications and advanced friction systems,” Mater. Sci. Eng. A, 412(1–2), 177 – 181 (2005); DOI: https://doi.org/10.1016/j.msea.2005.08.204.

    Article  CAS  Google Scholar 

  16. N. S. Jacobson, “Corrosion of silicon-based ceramics in combustion environments,” J. Eur. Ceram. Soc., 76, 3 – 28 (1993).

    Article  CAS  Google Scholar 

  17. D. Shaoming, “Preparation of SiC/SiC composites by hot pressing, using Tyranno-SA fiber as reinforcement,” J. Am. Ceram. Soc., 86(1), 26 – 32 (2003).

    Article  Google Scholar 

  18. G. Corman, R. Upadhyay, S. Sinha, et al., “General Electric company: selected applications of ceramics and composite materials,” Mater. Res. Manuf., 59 – 91 (2016); DOI: https://doi.org/10.1007/978-3-319-23419-93.

  19. G. Corman, Melt Infiltrated Composites (HIPERCOMP) for Gas Turbine Engine Applications, GE Global Research High Temperature and Structural Ceramics Laboratory, Niskayuna, N.Y. (2006); DOI: https://doi.org/10.2172/936318.

  20. G. Corman, Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines, Final Report, GE Global Research Advanced Ceramics Laboratory Niskayuna (2010); DOI: https://doi.org/10.2172/1004879.

  21. T. D. Karimbaev, M. A. Mezentsev, and A. Yu. Ezhov, “Development and experimental study of nonmetallic parts and units of the hot part of an advanced gas-turbine engine,” Vest. Samarskogo Gos. Aerokosm. Univ., 14(3), Pt. 1, 128 – 138 (2015).

  22. E. P. Simonenko, N. P. Simonenko, A. V. Derbenev, and V. A. Nikolaev, “Synthesis of nanocrystalline silicon carbide by the sol-gel method,” Zh. Neorg. Khim., 58(13), 1279 – 1288 (2013); DOI: https://doi.org/10.7868/S0044457X1310022X.

    Article  Google Scholar 

  23. R. R. Naslain, “Design, preparation and properties of nonoxide CMCs for application in engines and nuclear reactors: an overview,” Composites Sci. Technol., 64, 155 – 170 (2004).

    Article  CAS  Google Scholar 

  24. E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, et al., “Functionally gradent composite material SiC/(ZrO2–HfO2–Y2O3), obtained by the sol-gel method,” Kompozity Nanostrukt., No. 4, 52 – 64 (2011).

    Google Scholar 

  25. E. N. Kablov, “Strategic directions of development of materials and their processing technologies in the period to 2030,” Aviats. Mater. Tekhnol., No. S, 7 – 17 (2012).

Download references

This work was performed as part of the implementation of the complex scientific direction 14.1: structural ceramic composite materials (‘Strategic directions of development of materials and their processing technologies in the period to 2030’) [25].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Shchegoleva.

Additional information

Translated from Steklo i Keramika, No. 2, pp. 13 – 17, February, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchegoleva, N.E., Evdokimov, S.A., Osin, I.V. et al. High-Temperature Ceramic Composites (SiC/SiCw). Glass Ceram 77, 47–50 (2020). https://doi.org/10.1007/s10717-020-00235-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-020-00235-2

Key words

Navigation