Skip to main content

Carbon Fiber Reinforced Silicon Carbide Ceramic Matrix Composites

Processing and Characterization When Fabricated by CVI and Hybrid Technique

  • Living reference work entry
  • First Online:
Handbook of Advanced Ceramics and Composites

Abstract

Carbon fiber reinforced silicon carbide matrix composites (Cf/SiC & Cf/C-SiC) are extensively studied as a new class of thermo-structural materials as an alternate candidate for Cf/C composites for increased oxidation resistance and for applications in the oxidizing environment for the past one to two decades. In recent years, many new processing techniques have been developed to process these composites. However, chemical vapor infiltration (CVI) and hybrid process [CVI+Molten silicon infiltration (MSI) and CVI+polymer impregnation and pyrolysis (CVI+PIP)] are more promising to develop the Cf/SiC composites with better properties. These composites possess superior properties such as high specific strength, specific modulus at high temperature, high-temperature chemical properties, and good tribological properties. Hence, they are well studied for application in a hypersonic vehicle, some components in military engines and reusable space vehicle, brake disc for aircraft, jet vanes, emergency brakes in cranes, calibration plates, fuel tube in a nuclear fission reactor, furnace charges devices, etc. This chapter describes the general introduction about Cf/SiC and Cf/C-SiC composites, their various processing routes, their properties, key results, and lastly, the key application areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Krenkel W (2005) Hand book of ceramic matrix composites. Wiley, Milton, Australia

    Google Scholar 

  2. Yajima S, Hasegawa Y, Okamura K, Matsuzawa I (1978) Development of high tensile strength silicon carbide fiber using an organosilicon polymer precursor. Nature 273:525–527

    Article  CAS  Google Scholar 

  3. Luthra KL, Singh RN, Brun MK (1993) Toughened silicon composites and preliminary properties. Bull Am Ceram Soc 72(7):79–85

    CAS  Google Scholar 

  4. Corman GS, Brun MK, Luthra KL (2000) SiC fiber reinforced SiC-Si matrix composites prepared by melt infiltration(MI) for gas turbine engine applications. In: International gas turbine and aeroengine congress and exhibition. Indianpolis, New York, 7–10, June 1999

    Google Scholar 

  5. Bickardike RL, Brown AR, Hughes G, Ranson H (1962) The deposition of pyrolytic carbon in the pores of the bonded and unbonded carbon powders. In: Mrosowski S, Studebaker MC, Walker PL (eds) Proceedings of fifth conference on carbon, vol I. New York, pp 575–583

    Google Scholar 

  6. Hitchman ML, Jensen KF (1993) Chemical vapor deposition: principles and applications. Academic, London

    Google Scholar 

  7. Starr TL (1988) Deposition kinetics in forced flow/thermal gradient CVI. Ceram Eng Sci Proc 9:803–811

    Article  CAS  Google Scholar 

  8. Roman YG, Stinton DP, Besmann TM (1991) Development of high density fiber reinforced silicon carbide FCVI composites. J Phys IV C2:689–695

    Google Scholar 

  9. Stinton DP, Besmann TM, Lowden RA (1988) Advanced ceramics by chemical vapor deposition techniques. Bull Am Ceram Soc 67:350–355

    CAS  Google Scholar 

  10. Katoh Y, Dong SM, Kohyama A (2002) A novel processing technique of silicon carbide-based ceramic composites for high temperature applications. Ceram Trans 144:77–86

    CAS  Google Scholar 

  11. Nakano K, Suzuki K, Drissi-Habti M, Kanno Y (1998) Processing and characterization of 3D carbon fiber reinforced silicon carbide and silicon nitride matrix composites. Ceram Trans 99:157–166

    CAS  Google Scholar 

  12. Suzuki K, Kume S, Nakano K, Chou TW (1998) Fabrication and characterization of 3D-C/SiC composites via slurry and PCVI joint process. Key Eng Mater 164–165:113–116

    Article  Google Scholar 

  13. Motz G, Schmidt S, Beyer S (2008) The PIP-process: precursor properties and applications. In: Krenkel W (ed) Ceramic matrix composites. Wiley-VCH Verlag, Weinheim, pp 357–359

    Google Scholar 

  14. Schmidt S, Beyer S, Knabe H, Immich H, Meistring R, Gessler A (2005) Ceramic matrix composites: a challenge in space propulsion technology applications. J Appl Ceram Technol 2(2):85–96

    Article  CAS  Google Scholar 

  15. Lacombe A, Rouges JM (1990) Ceramic matrix composites, Societe Europeene de Propulsion, AIAA-90-3837

    Google Scholar 

  16. Singh S et al (2015) Microstructural-property correlation of CVI processed Cf/SiC composites and property enhancement as a function of CVD SiC seal coating. Ceram Int 41:14896–14907

    Article  CAS  Google Scholar 

  17. Udayakumar A et al (2014) Mechanical properties of 3D noninterlaced Cf/SiC composites prepared through hybrid process (CVI+PIP). Int J Mater Metall Eng 8:9

    Google Scholar 

  18. Diefendorf RJ, Boisvert RP (1988) Siliciumcarbid-Composites durch polymere Ausgangswerkstoffe. In: Proceedings of Verbundwerk. Demat Exposition Managing, Frankfurt, pp 13.01–13.37

    Google Scholar 

  19. Krenkel W (2003) Designing with C/C-SiC composites. In: Bansal NP et al (eds) Advances in ceramic matrix composites IX, vol 153, pp 103–123. Ceram Trans

    Google Scholar 

  20. SGL Carbon Group (2005) SIGRASIC 6010 GNJ, Faserverst€arkte Keramik f€ur Bremsscheiben

    Google Scholar 

  21. Weiss R (2001) Carbon fiber reinforced CMCs: manufacture, properties, oxidation protection. In: Krenkel W, Naslain R, Schneider H (eds) High temperature ceramic matrix composites. Wiley-VCH, Weinheim, pp 440–456

    Google Scholar 

  22. Schafer W, Vogel WD (2003) Faserverst€arkte Keramiken hergestellt durch Polymerinfiltration. In: Krenkel W (ed) Keramische Verbundwerkstoffe. Wiley-VCH, Weinheim, pp 76–94

    Google Scholar 

  23. Muhlratzer A, Leuchs M (2001) Applications of non-oxide CMC. In: Krenkel W, Naslain R, Schneider H (eds) High temperature ceramic matrix composites. Wiley-VCH, Weinheim, pp 288–289

    Google Scholar 

  24. Schoppachet A et al (2000) Use of ceramic matrix composites in high precision laser communication optics. In: European conference on spacecraft structures, materials and mechanical testing. ESTEC, Nordwijk

    Google Scholar 

  25. Heidenreichet B et al (2010) C/C -SiC telescope structure for the laser communication terminal in TerraSAR-X. In: Krenkel W, Lamon J (eds) High temperature ceramic matrix composites. Aviso Verlagsges, Berlin, pp 505–512

    Google Scholar 

  26. Klaus Drechsler et al (2009) Carbon fiber reinforced composites. Wiley-VCH Verlag GmbH. https://doi.org/10.1002/14356007.m05_m02

  27. Bansal NP (2005) Handbook of ceramic composites. Springer, Kluwer Academic Publishers New York, Boston, Dordrecht, London, Moscow

    Google Scholar 

  28. Krenkel W (2003) C/C-SiC composites for hot structures and advanced friction systems. Ceram Eng Sci Proc 24(4):583–592

    Article  CAS  Google Scholar 

  29. Li Z et al (2015) Preparation and tribological properties of C/C-SiC brake composites modified by in situ grown carbon nanofibers. Ceram Int 41:11733–11740

    Article  CAS  Google Scholar 

  30. Zhaun L et al (2010) Manufacture and properties of carbon fiber-reinforced C/SiC dual matrix composites. Carbon 25(3):225–231

    Google Scholar 

  31. Jian-Xin Z et al (2010) Microstructure and frictional properties of 3D needled C/SiC brake materials modified with graphite. Trans Nonfer Met Soc China 20:2289–2293

    Article  Google Scholar 

  32. Fan S et al (2016) Progress of ceramic matrix composites brake materials for aircraft application. Rev Adv Mater Sci 44:313–325

    Google Scholar 

  33. Fan S et al (2008) Microstructure and Tribological properties of advanced carbon/silicon carbide aircraft brake materials. Compos Sci Technol 68:3002–3009

    Article  CAS  Google Scholar 

  34. Fohl J, Wiedemeyer J (2000) Forschungsberichte der. DKG 15(I)

    Google Scholar 

  35. Fohl J, Wiedemeyer J (2001) Kap. 8.3.1.3: Qualifikation Von Faserverbundkeramik fur friktionsanwendunge. In: Kriegesmann J (ed) DKG-Handbuch. Deutscher Writschaftsdienst, Koln

    Google Scholar 

  36. Bansal NP, Lamon J Ceramic matrix composites materials, modelling and technology. The American Ceramic Society, Wiley, Hoboken

    Google Scholar 

  37. Lamouroux F, Camus G (1994) Oxidation effects on the mechanical properties of 2D woven C/SiC comopsites. J Eur Ceram Soc 14:177–188

    Article  CAS  Google Scholar 

  38. Kelly A, Zweban C (2000) Comprehensive composite materials, vol 4. Elsevier, Pergamon, Cambridge University Press, UK

    Google Scholar 

  39. Zhao S, Zhou X, Wang H (2014) Oxidation resistant behaviour of Mullite/Yttrium silicate multilayer coating for Cf/SiC composites at 1500°C. Key Eng Mater 602–603:430–433

    Article  Google Scholar 

  40. Yang X et al (2016) ZrB2-SiC as a protective coating for C/SiC composites: effect of high temperature oxidation on thermal shock property and protection mechanism. J Asian Ceram Soc 4:159–163

    Article  Google Scholar 

  41. Chamberlain AL, Fahrenholtz WG, Hilmas GE, Ellerby D (2009) Reactive processing of zirconium diboride. J Eur Ceram Soc 29(16):3401–3408

    Article  CAS  Google Scholar 

  42. Fahrenholtz W (2005) The ZrB2 volatility diagram. J Am Ceram Soc 88(12):3509–3512

    Article  CAS  Google Scholar 

  43. Donga S, Wena H, Zhoua Q, Dinga Y (2009) Preparation of oxidation-protective SiC coatings for C/SiC composites by pulsed chemical vapor deposition. J Ceram Process Res 10(3):278–285

    Google Scholar 

  44. Alfano D (2011) Spectroscopic properties of carbon fiber reinforced silicon carbide composites for aerospace applications, Italian Aerospace Research Centre

    Google Scholar 

  45. Weihs H, Reimer T, Laux T (2004) Mechanical architecture and status of the flight unit of the Sharp Edge Flight Experiment SHEFEX. IAF Congress, Vancouver

    Google Scholar 

  46. Roger R (2005) Naslain, SiC-matrix composites: nonbrittle ceramics for thermo-structural application. Int J Appl Ceram Technol 2(2):75–84

    Article  Google Scholar 

  47. Koehler RJ (2001) Manuscript of the presentation at the shareholders’ meeting of the SGL Carbon Group 2001, Germany

    Google Scholar 

  48. Fitzer E, Gadow R (1986) Fiber-reinforced silicon carbide. Am Ceram Soc Bull 65:368–372

    Google Scholar 

  49. Frieß M et al (2005) Keramische Verbundstrukturen fur hochagile Flugk€orper. In: Proceedings des Deutschen Luft-und Raumfahrtkongress 2005. Friedrichshafen

    Google Scholar 

  50. Kochendörfer R, Lützenburger N (2001) Applications of CMCs made via the Liquid Silicon Infiltration (LSI) technique, high temperature ceramic matrix composites (eds: Krenkel W, Naslain R, Schneider H). Wiley-VCH, Weinheim, pp 277–287

    Google Scholar 

  51. Renz R, Heidenreich B, Krenkel W, Schöppach A, Richter F (2001) CMC materials for lightweight and low CTE applications, high temperature ceramic matrix composites (eds: Krenkel W, Naslain R, Schneider H). Wiley-VCH, Weinheim, pp 839–845

    Google Scholar 

  52. Schmidt J, Scheiffele M, Krenkel W (2001) Engineering of CMC tubular components, high temperature ceramic matrix composites (eds: Krenkel W, Naslain R, Schneider R). Wiley-VCH, Weinheim, pp 826–831

    Google Scholar 

  53. Labanti M, Martignani G, Mingazzini C, Minoccari GL, Pilotti L, Ricci A, Weiss R (2001) Evaluation of damage by oxidation corrosion at high temperatures of coated C/C-SiC ceramic composite, high temperature ceramic matrix composites (eds: Krenkel W, Naslain R, Schneider H). Wiley-VCH, Weinheim, pp 218–223

    Google Scholar 

  54. ECM, Cesic® Kohlefaserverstrktes Siliciumcarbid, Produktinformation

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udayakumar A .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

A, U., Basha, M.R., Singh, S., kumari, S., Prasad, V.V.B. (2020). Carbon Fiber Reinforced Silicon Carbide Ceramic Matrix Composites. In: Mahajan, Y., Roy, J. (eds) Handbook of Advanced Ceramics and Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-73255-8_26-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73255-8_26-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73255-8

  • Online ISBN: 978-3-319-73255-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics