Skip to main content
Log in

Physical analysis of spherical stellar structures in \(f(\textrm{Q},\textrm{T})\) theory

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

This paper explores the viability and stability of compact stellar objects characterized by anisotropic matter in the framework of \(f(\textrm{Q},\textrm{T})\) theory, where \(\textrm{Q}\) denotes non-metricity and \(\textrm{T}\) represents the trace of the energy-momentum tensor. We consider a specific model of this theory to obtain explicit expressions for the field equations governing the behavior of matter and geometry in this context. Furthermore, the Karmarkar condition is employed to assess the configuration of static spherically symmetric structures. The values of unknown constants in the metric potentials are determined through matching conditions of the interior and exterior spacetimes. Various physical quantities such as fluid parameters, energy constraints, equation of state parameters, mass, compactness and redshift are graphically analyzed to evaluate the viability of the considered compact stars. The Tolman–Oppenheimer–Volkoff equation is used to examine the equilibrium state of the stellar models. Moreover, the stability of the proposed compact stars is investigated through sound speed and adiabatic index methods. This study concludes that the proposed compact stars analyzed in this theoretical framework are viable and stable, as all the required conditions are satisfied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

No new data was created or analyzed in this study.

References

  1. Baade, W., Zwicky, F.: Phys. Rev. 46, 76 (1934)

    Article  ADS  Google Scholar 

  2. Longair, M.S.: High Energy Astrophysics. Cambridge Univeristy Press, Cambridge (1994)

    Book  Google Scholar 

  3. Dev, K., Gleiser, M.: Gen. Relativ. Gravit. 39, 1793 (2002)

    Article  Google Scholar 

  4. Mak, M.K., Harko, T.: Int. J. Mod. Phys. D 13, 156 (2004)

    ADS  Google Scholar 

  5. Eisenhart, L.P.: Riemannian Geometry. Princeton University Press, Princeton (1925)

    Google Scholar 

  6. Maurya, S.K., et al.: Eur. Phys. J. A 52, 191 (2016)

    Article  ADS  Google Scholar 

  7. Maurya, S.K., et al.: Eur. Phys. J. C 76, 266 (2016)

    Article  ADS  Google Scholar 

  8. Singh, K.N., Pant, N.: Eur. Phys. J. C 76, 524 (2016)

    Article  ADS  Google Scholar 

  9. Bhar, P., et al.: Int. J. Mod. Phys. D 26, 1750078 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  10. Weyl, H.S.: Preuss. Akad. Wiss. 1, 465 (1918)

    Google Scholar 

  11. Kirsch, I.: Phys. Rev. 72, 024001 (2005)

    ADS  Google Scholar 

  12. Boulanger, N., Kirsch, I.: Phys. Rev. 73, 124023 (2006)

    ADS  Google Scholar 

  13. Aldrovandi, R., Pereira, J.G.: Teleparallel Gravity: An Introduction. Springer, Berlin (2012)

    Google Scholar 

  14. Jimenez, J.B., Heisenberg, I., Koivisto, L.T.: Phys. Rev. 98, 044048 (2018)

    ADS  MathSciNet  Google Scholar 

  15. Felice, A.D., Tsujikawa, S.R.: Living Rev. Relativ. 13, 3 (2010)

    Article  ADS  Google Scholar 

  16. Mustafa, G., et al.: Phys. Rev. D 101, 104013 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  17. Mustafa, G., et al.: Phys. Scr. 96, 045009 (2021)

    Article  ADS  Google Scholar 

  18. Mustafa, G., et al.: Phys. Dark Univ. 31, 100747 (2021)

    Article  Google Scholar 

  19. Gul, M.Z., Sharif, M.: Chin. J. Phys. 88, 388 (2024)

    Article  Google Scholar 

  20. Gul, M.Z., Sharif, M.: New Astron. 106, 102137 (2024)

    Article  Google Scholar 

  21. Harko, T., et al.: Phys. Rev. D 84, 024020 (2011)

    Article  ADS  Google Scholar 

  22. Mustafa, G., et al.: Chin. J. Phys. 67, 576 (2020)

    Article  Google Scholar 

  23. Mustafa, G., et al.: Eur. Phys. J. C 80, 26 (2020)

    Article  ADS  Google Scholar 

  24. Mustafa, G., et al.: Astrophys. J. 941, 170 (2022)

    Article  ADS  Google Scholar 

  25. Sharif, M., Gul, M.Z.: Mod. Phys. Lett. A 36, 2150214 (2021)

    Article  ADS  Google Scholar 

  26. Gul, M.Z., Sharif, M., Kanwal, I.: New Astron. 109, 102204 (2024)

    Article  Google Scholar 

  27. Sharif, M., Shakeel, M., Gul, M.Z.: New Astron. 108, 102179 (2024)

    Article  Google Scholar 

  28. Sharif, M., Gul, M.Z.: Eur. Phys. J. Plus 133, 345 (2018)

    Article  Google Scholar 

  29. Sharif, M., Gul, M.Z.: Chin. J. Phys. 57, 329 (2019)

    Article  Google Scholar 

  30. Sharif, M., Gul, M.Z.: Int. J. Mod. Phys. D 28, 1950054 (2019)

    Article  ADS  Google Scholar 

  31. Adeel, M., et al.: Mod. Phys. Lett. A 38, 2350152 (2023)

    Article  ADS  Google Scholar 

  32. Gul, M.Z., et al.: Eur. Phys. J. C 84, 8 (2024)

    Article  ADS  Google Scholar 

  33. Rani, S., et al.: Int. J. Geom. Methods Mod. Phys. 21, 2450033 (2024)

    Article  Google Scholar 

  34. Crisostomi, M., Koyama, K., Tasinato, G.: J. Cosmol. Astropart. Phys. 04, 044 (2016)

    Article  ADS  Google Scholar 

  35. Xu, Y., et al.: Eur. Phys. J. C 79, 708 (2019)

    Article  ADS  Google Scholar 

  36. Arora, S., et al.: Phys. Dark Universe 30, 100664 (2020)

    Article  Google Scholar 

  37. Bhattacharjee, S., Sahoo, P.K.: Eur. Phys. J. C 80, 289 (2020)

    Article  ADS  Google Scholar 

  38. Arora, S., Sahoo, P.K.: Phys. Scr. 95, 095003 (2020)

    Article  ADS  Google Scholar 

  39. Xu, Y., Harko, T., Shahidi, S., Liang, S.D.: Eur. Phys. J. C 80, 449 (2020)

    Article  ADS  Google Scholar 

  40. Najera, A., Fajardo, A.: Phys. Dark Universe 34, 100889 (2021)

    Article  Google Scholar 

  41. Godani, N., Samanta, G.C.: Int. J. Geom. Methods Mod. Phys. 18, 2150134 (2021)

    Article  Google Scholar 

  42. Agrawal, A.S., Pati, L., Tripathy, S.K., Mishra, B.: Phys. Dark Universe 33, 100863 (2021)

    Article  Google Scholar 

  43. Pradhan, S., Mohanty, D., Sahoo, P.K.: Chin. Phys. C 47, 095104 (2023)

    Article  ADS  Google Scholar 

  44. Arapoglu, S., Deliduman, C., Eksi, K.Y.: J. Cosmol. Astropart. Phys. 07, 020 (2011)

    Article  ADS  Google Scholar 

  45. Astashenok, A.V., Capozziello, S., Odintsov, S.D.: Phys. Rev. D 89, 103509 (2014)

    Article  ADS  Google Scholar 

  46. Das, A., et al.: Eur. Phys. J. C 76, 654 (2016)

    Article  ADS  Google Scholar 

  47. Deb, D., et al.: J. Cosmol. Astropart. Phys. 2018, 044 (2018)

    Article  Google Scholar 

  48. Biswas, S., et al.: Ann. Phys. 401, 20 (2019)

    Article  Google Scholar 

  49. Bhar, P., Singh, K.N., Tello-Ortiz, F.: Eur. Phys. J. C 79, 922 (2019)

    Article  ADS  Google Scholar 

  50. Sharif, M., Ramzan, A.: Phys. Dark Universe 30, 100737 (2020)

    Article  Google Scholar 

  51. Sharif, M., Ramzan, A.: Astrophys. Space Sci. 365, 137 (2020)

    Article  ADS  Google Scholar 

  52. Dey, S., Chanda, A., Paul, B.C.: Eur. Phys. J. Plus 136, 228 (2021)

    Article  Google Scholar 

  53. Sharif, M., Gul, M.Z.: Phys. Scr. 96, 025002 (2021)

    Article  ADS  Google Scholar 

  54. Sharif, M., Gul, M.Z.: Phys. Scr. 07, 154 (2021)

    Google Scholar 

  55. Sharif, M., Gul, M.Z.: Adv. Astron. 2021, 6663502 (2021)

    Article  ADS  Google Scholar 

  56. Sharif, M., Gul, M.Z.: Eur. Phys. J. Plus 136, 503 (2021)

    Article  Google Scholar 

  57. Sharif, M., Gul, M.Z.: Chin. J. Phys. 80, 58 (2022)

    Article  Google Scholar 

  58. Sharif, M., Gul, M.Z.: J. Exp. Theor. Phys. 136, 436 (2023)

    Article  ADS  Google Scholar 

  59. Gul, M.Z., Sharif, M.: Symmetry 15, 684 (2023)

    Article  ADS  Google Scholar 

  60. Sharif, M., Gul, M.Z.: Phys. Scr. 96, 105001 (2021)

    Article  ADS  Google Scholar 

  61. Sharif, M., Gul, M.Z.: Pramana J. Phys. 96, 153 (2022)

  62. Sharif, M., Gul, M.Z.: Universe 9, 145 (2023)

    Article  ADS  Google Scholar 

  63. Sharif, M., Gul, M.Z.: Int. J. Mod. Phys. A 36, 2150004 (2021)

    Article  ADS  Google Scholar 

  64. Sharif, M., Gul, M.Z.: Universe 7, 154 (2021)

    Article  ADS  Google Scholar 

  65. Sharif, M., Gul, M.Z.: Chin. J. Phys. 71, 365 (2021)

    Article  Google Scholar 

  66. Sharif, M., Gul, M.Z.: Mod. Phys. Lett. A 37, 2250005 (2022)

    Article  ADS  Google Scholar 

  67. Sharif, M., Gul, M.Z.: Int. J. Geom. Methods Mod. Phys. 19, 2250012 (2022)

    Article  Google Scholar 

  68. Sharif, M., Gul, M.Z.: Gen. Relativ. Gravit. 55, 10 (2023)

    Article  ADS  Google Scholar 

  69. Sharif, M., Gul, M.Z.: Phys. Scr. 98, 035030 (2023)

    ADS  Google Scholar 

  70. Sharif, M., Gul, M.Z.: Pramana-J. Phys. 97, 122 (2023)

    Article  ADS  Google Scholar 

  71. Mustafa, G., et al.: Phys. Scr. 96, 105008 (2021)

    Article  ADS  Google Scholar 

  72. Mustafa, G., et al.: Chin. J. Phys. 77, 1742 (2022)

    Article  Google Scholar 

  73. Mustafa, G., et al.: Chin. J. Phys. 67, 576 (2020)

    Article  Google Scholar 

  74. Mustafa, G., et al.: Phys. Dark Universe 30, 100652 (2020)

    Article  Google Scholar 

  75. Mustafa, G., et al.: Phys. Scr. 96, 045009 (2021)

    Article  ADS  Google Scholar 

  76. Javed, F., et al.: Nucl. Phys. B 990, 116180 (2023)

    Article  Google Scholar 

  77. Javed, F., et al.: Fortschr. Phys. 2023, 2200214 (2023)

    Article  Google Scholar 

  78. Javed, F., et al.: Eur. Phys. J. C 83, 1088 (2023)

    Article  ADS  Google Scholar 

  79. Javed, F.: Eur. Phys. J. C 83, 513 (2023)

    Article  ADS  Google Scholar 

  80. Javed, F.: Ann. Phys. 458, 169464 (2023)

    Article  Google Scholar 

  81. Javed, F.: Int. J. Geom. Methods. Mod. Phys. 19, 2250190 (2022)

    Article  Google Scholar 

  82. Dirac, P.A.M.: Proc. R. Soc. Lond. A 333, 403 (1973)

    Article  ADS  Google Scholar 

  83. Novello, M., Perez Bergliaffa, S.E.: Phys. Rep. 463, 127 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  84. Hehl, F.W., et al.: Rev. Mod. Phys. 48, 393 (1976)

    Article  ADS  Google Scholar 

  85. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Pergamon Press, Oxford (1970)

    Google Scholar 

  86. Moraes, P.H.R.S., Sahoo, P.K.: Phys. Rev. D 97, 024007 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  87. Maurya, S.K., et al.: Phys. Rev. D 100, 044014 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  88. Rahaman, M., et al.: Eur. Phys. J. C 80, 272 (2020)

    Article  ADS  Google Scholar 

  89. Xu, Y., et al.: Eur Phys. J. C 80, 449 (2020)

    Article  ADS  Google Scholar 

  90. Tayde, M., et al.: Chin. Phys. C 46, 115101 (2022)

    Article  ADS  Google Scholar 

  91. Karmarkar, K.R.: Proc. Indian Acad. Sci. A 27, 56 (1948)

    Article  Google Scholar 

  92. Maurya, S.K., Maharaj, S.D.: Eur. Phys. J. C 77, 13 (2017)

    Article  Google Scholar 

  93. Bhar, P., Singh, K.N., Sarkar, N., Rahaman, F.: Eur. Phys. J. C 77, 596 (2017)

    Article  ADS  Google Scholar 

  94. Naidu, N.F., Govender, M., Maharaj, S.D.: Eur. Phys. J. C 78, 7 (2018)

    Article  Google Scholar 

  95. Singh, K.N., Bisht, R.K., Maurya, S.K., Pant, N.: Chin. Phys. C 44, 035101 (2020)

    Article  ADS  Google Scholar 

  96. Mustafa, G., Shamir, M.F., Ahmad, M.: Phys. Dark Universe 30, 100652 (2020)

    Article  Google Scholar 

  97. Mustafa, G., Shamir, M.F., Tie-Cheng, X.: Phys. Rev. D 101, 104013 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  98. Maurya, S.K., Al Kindi, A.S., Al Hatmi, M.R., Nag, R.: Results Phys. 29, 104674 (2021)

    Article  Google Scholar 

  99. Naz, T., Usman, A., Shamir, M.F.: Ann. Phys. 429, 168491 (2021)

    Article  Google Scholar 

  100. Malik, A., Mofarreh, F., Zia, A., Ali, A.: Chin. Phys. C 46, 095104 (2022)

    Article  ADS  Google Scholar 

  101. Bhar, P., Singh, K.N., Manna, T.: Int. J. Mod. Phys. D 26, 1750090 (2017)

    Article  ADS  Google Scholar 

  102. Singh, K.N., Pant, N., Govender, M.: Eur. Phys. J. C 77, 11 (2017)

    Article  Google Scholar 

  103. Rawls, M.L., et al.: Astrophys. J. 730, 25 (2011)

    Article  ADS  Google Scholar 

  104. Elebert, P., et al.: Mon. Not. R. Astron. Soc. 395, 884 (2009)

    Article  ADS  Google Scholar 

  105. Abubekerov, M.K., et al.: Astron. Rep. 52, 379 (2008)

    Article  ADS  Google Scholar 

  106. Ozel, F., Guver, T., Psaltis, D.: Astrophys. J. 693, 1775 (2009)

    Article  ADS  Google Scholar 

  107. Deb, D., et al.: Ann. Phys. 387, 239 (2017)

    Article  ADS  Google Scholar 

  108. Shamir, M.F., Zia, S.: Eur. Phys. J. C 77, 448 (2017)

    Article  ADS  Google Scholar 

  109. Buchdahl, A.H.: Phys. Rev. D 116, 1027 (1959)

    Article  ADS  Google Scholar 

  110. Ivanov, B.V.: Phys. Rev. D 65, 104011 (2002)

    Article  ADS  Google Scholar 

  111. Bejger, M., Haensel, P.: Astron. Astrophys. 396, 3 (2002)

    Article  Google Scholar 

  112. Tolman, R.C.: Phys. Rev. 55, 364 (1939)

    Article  ADS  Google Scholar 

  113. Oppenheimer, J.R., Volkoff, G.M.: Phys. Rev. 55, 374 (1939)

    Article  ADS  Google Scholar 

  114. Herrera, L.: Phys. Lett. A 165, 206 (1992)

    Article  ADS  Google Scholar 

  115. Chandrasekhar, S.: Astrophys. J. 140, 417 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  116. Salako, I.G., et al.: Universe 6, 167 (2020)

    Article  ADS  Google Scholar 

  117. Salako, I.G., et al.: Int. J. Mod. Phys. D 30, 2140003 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  118. Das, S., et al.: Ann. Phys. 433, 168597 (2021)

    Article  Google Scholar 

  119. Yousaf, Z., et al.: Eur. Phys. J. C 77, 691 (2017)

    Article  ADS  Google Scholar 

  120. Sharif, M., Gul, M.Z.: Fortschr. der. Phys. 71, 2200184 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Zeeshan Gul or M. Sharif.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Non-metricity scalar

According to Eqs. (18) and (19), we have

$$\begin{aligned} \textrm{Q}\equiv & {} -\textrm{g}^{\mu \nu } (\textrm{L}^{\lambda }_{\xi \mu }\textrm{L}^{\xi }_{\nu \lambda } - \textrm{L}^{\lambda }_{\xi \lambda }\textrm{L}^{\xi }_{\mu \nu }), \\ \textrm{L}^{\lambda }_{\xi \mu }= & {} -\frac{1}{2} \textrm{g}^{\lambda \varsigma }(\textrm{Q}_{\mu \xi \varsigma } +\textrm{Q}_{\xi \varsigma \mu }-\textrm{Q}_{\varsigma \mu \xi }), \\ \textrm{L}^{\xi }_{\nu \lambda }= & {} -\frac{1}{2} \textrm{g}^{\xi \varsigma }(\textrm{Q}_{\lambda \nu \varsigma } +\textrm{Q}_{\nu \varsigma \lambda }-\textrm{Q}_{\varsigma \lambda \nu }), \\ \textrm{L}^{\lambda }_{\xi \mu }= & {} -\frac{1}{2} \textrm{g}^{\lambda \varsigma }(\textrm{Q}_{\lambda \xi \varsigma } +\textrm{Q}_{\xi \varsigma \lambda }-\textrm{Q}_{\varsigma \lambda \xi }), \\= & {} -\frac{1}{2}(\bar{\textrm{Q}}_{\xi } +\textrm{Q}_{\xi }-\bar{\textrm{Q}}_{\xi })=-\frac{1}{2} \textrm{Q}_{\xi }, \\ \textrm{L}^{\xi }_{\mu \nu }= & {} -\frac{1}{2}\textrm{g}^{\xi \varsigma }(\textrm{Q}_{\nu \mu \varsigma } +\textrm{Q}_{\mu \varsigma \nu }-\textrm{Q}_{\varsigma \nu \mu }). \end{aligned}$$

Thus, we have

$$\begin{aligned} -\textrm{g}^{\mu \nu }\textrm{L}^{\lambda }_{\xi \mu } \textrm{L}^{\xi }_{\nu \lambda }= & {} -\frac{1}{4}\textrm{g}^{\mu \nu }\textrm{g}^{\lambda \varsigma } \textrm{g}^{\xi \varsigma } (\textrm{Q}_{\mu \xi \varsigma }+\textrm{Q}_{\xi \varsigma \mu } -\textrm{Q}_{\varsigma \mu \xi }) \\{} & {} \times (\textrm{Q}_{\lambda \nu \varsigma }+\textrm{Q}_{\nu \varsigma \lambda } -\textrm{Q}_{\varsigma \lambda \nu }), \\= & {} -\frac{1}{4}(\textrm{Q}^{\nu \varsigma \lambda }+\textrm{Q}^{\varsigma \lambda \nu } -\textrm{Q}^{\lambda \nu \varsigma }) \\{} & {} \times (\textrm{Q}_{\lambda \nu \varsigma }+\textrm{Q}_{\nu \varsigma \lambda } -\textrm{Q}_{\varsigma \lambda \nu }), \\= & {} -\frac{1}{4}(2\textrm{Q}^{\nu \varsigma \lambda }\textrm{Q}_{\varsigma \lambda \nu } - \textrm{Q}^{\nu \varsigma \lambda }\textrm{Q}_{\nu \varsigma \lambda }), \\ \textrm{g}^{\mu \nu }\textrm{L}^{\lambda }_{\xi \lambda }\textrm{L}^{\xi }_{\mu \nu }= & {} \frac{1}{4}\textrm{g}^{\mu \nu }\textrm{g}^{\xi \varsigma }\textrm{Q}_{\varsigma } (\textrm{Q}_{\nu \mu \varsigma }+\textrm{Q}_{\mu \varsigma \nu } -\textrm{Q}_{\varsigma \nu \mu }), \\= & {} \frac{1}{4}\textrm{Q}^{\varsigma }(2\bar{\textrm{Q}_{\varsigma }}- \textrm{Q}_{\varsigma }),\ \\ \textrm{Q}= & {} -\frac{1}{4}(\textrm{Q}^{\lambda \nu \varsigma }\textrm{Q}_{\lambda \nu \varsigma } +2\textrm{Q}^{\lambda \nu \varsigma \lambda }\textrm{Q}_{\varsigma \lambda \nu } \\{} & {} -2\textrm{Q}^{\varsigma }\bar{\textrm{Q}_{\varsigma }}+\textrm{Q}^{\varsigma }\textrm{Q}_{\varsigma }). \end{aligned}$$

According to Eq. (24), we obtain

$$\begin{aligned} \textrm{P}^{\lambda \mu \nu }= & {} \frac{1}{4}[-\textrm{Q}^{\lambda \mu \nu } +\textrm{Q}^{\mu \lambda \nu }+\textrm{Q}^{\nu \lambda \mu } +\textrm{Q}^{\lambda }\textrm{g}^{\mu \nu } \\{} & {} -\bar{\textrm{Q}^{\lambda }}\textrm{g}^{\mu \nu }-\frac{1}{2} (\textrm{g}^{\lambda \mu } \textrm{Q}^{\nu }+\textrm{g}^{\lambda \nu }\textrm{Q}^{\mu })], \\ -\textrm{Q}_{\lambda \mu \nu }\textrm{P}^{\lambda \mu \nu }= & {} -\frac{1}{4}[-\textrm{Q}_{\lambda \mu \nu }\textrm{Q}^{\lambda \mu \nu } \\{} & {} +\textrm{Q}_{\lambda \mu \nu }\textrm{Q}^{\mu \lambda \nu } +\textrm{Q}^{\nu \lambda \mu } \textrm{Q}_{\lambda \mu \nu }+\textrm{Q}_{\lambda \mu \nu } \textrm{Q}^{\lambda }\textrm{g}^{\mu \nu } \\{} & {} -\textrm{Q}_{\lambda \mu \nu }\bar{\textrm{Q}^{\lambda }} \textrm{g}^{\mu \nu } -\frac{1}{2}\textrm{Q}_{\lambda \mu \nu }(\textrm{g}^{\lambda \mu } \textrm{Q}^{\nu } +\textrm{g}^{\lambda \nu }\textrm{Q}^{\mu })], \\= & {} -\frac{1}{4}(-\textrm{Q}_{\lambda \mu \nu }\textrm{Q}^{\lambda \mu \nu } +2\textrm{Q}_{\lambda \mu \nu }\textrm{Q}^{\mu \lambda \nu }+\textrm{Q}^{\lambda } \textrm{Q}_{\lambda }-2\tilde{\textrm{Q}^{\lambda }}\textrm{Q}_{\lambda }), \\= & {} \textrm{Q}. \end{aligned}$$

Appendix B: Variation of non-metricity scalar

All the non-metricity tensors are given as

$$\begin{aligned} \textrm{Q}_{\lambda \mu \nu }= & {} \nabla _{\lambda }\textrm{g}_{\mu \nu }, \\ \textrm{Q}^{\lambda }~_{\mu \nu }= & {} \textrm{g}^{\lambda \xi } \textrm{Q}_{\xi \mu \nu } =\textrm{g}^{\lambda \xi }\nabla _{\xi }\textrm{g}_{\mu \nu } =\nabla ^{\lambda }\textrm{g}_{\mu \nu }, \\ \textrm{Q}_{\lambda ~~\nu }^{~~\mu }= & {} \textrm{g}^{\mu \varsigma }\textrm{Q}_{\lambda \varsigma \nu } =\textrm{g}^{\mu \varsigma }\nabla _{\lambda }\textrm{g}_{\varsigma \nu } =-\textrm{g}_{\mu \varsigma }\nabla _{\lambda }\textrm{g}^{\mu \varsigma }, \\ \textrm{Q}_{\lambda \mu }^{~~\nu }= & {} \textrm{g}^{\nu \varsigma }\textrm{Q}_{\lambda \mu \varsigma } =\textrm{g}^{\nu \varsigma }\nabla _{\lambda }\textrm{g}_{\mu \varsigma } =-\textrm{g}_{\mu \varsigma }\nabla _{\lambda }\textrm{g}^{\nu \varsigma }, \\ \textrm{Q}^{\lambda \mu }_{~~\nu }= & {} \textrm{g}^{\mu \varsigma }\textrm{g}^{\lambda \xi }\nabla _{\xi }\textrm{g} _{\varsigma \nu } =\textrm{g}^{\mu \varsigma }\nabla ^{\lambda }\textrm{g}_{\nu \varsigma } =-\textrm{g}_{\varsigma \nu }\nabla ^{\lambda }\textrm{g}^{\mu \varsigma }, \\ \textrm{Q}^ {\lambda ~~\nu } _{~\mu }= & {} \textrm{g}^{\nu \varsigma }\textrm{g}^{\lambda \xi }\nabla _{\xi }\textrm{g} _{\mu \varsigma } =\textrm{g}^{\nu \varsigma }\nabla ^{\lambda }\textrm{g}_{\mu \varsigma } =-\textrm{g}_{\mu \varsigma }\nabla ^{\lambda }\textrm{g}^{\nu \varsigma }, \\ \textrm{Q}_{\lambda }^{~~\mu \nu }= & {} \textrm{g}^{\mu \varsigma }\textrm{g}^{\nu \xi }\nabla _{\lambda }\textrm{g} _{\varsigma \xi } =-\textrm{g}^{\mu \varsigma }\textrm{g}_{\varsigma \xi }\nabla _{\lambda } \textrm{g}^{\nu \varsigma } =-\nabla _{\lambda }\textrm{g}^{\mu \nu }. \end{aligned}$$

By using Eq. (25), we have

$$\begin{aligned} \delta \textrm{Q}= & {} -\frac{1}{4} \delta (-\textrm{Q}^{\lambda \nu \varsigma } \textrm{Q}_{\lambda \nu \varsigma }+2\textrm{Q}^{\lambda \nu \varsigma } \textrm{Q}_{\varsigma \lambda \nu }-2\textrm{Q}^{\varsigma } \bar{\textrm{Q}_{\varsigma }}+\textrm{Q}^{\varsigma }\textrm{Q}_{\varsigma }), \\= & {} -\frac{1}{4}(-\delta \textrm{Q}^{\lambda \nu \varsigma } \textrm{Q}_{\lambda \nu \varsigma } - \textrm{Q}^{\lambda \nu \varsigma }\delta \textrm{Q}_{\lambda \nu \varsigma } + 2\delta \textrm{Q}_{\lambda \nu \varsigma }\textrm{Q}^{\varsigma \lambda \nu } \\{} & {} + 2 \textrm{Q}^{\lambda \nu \varsigma }\delta \textrm{Q}_{\varsigma \lambda \nu }-2\delta \textrm{Q}^{\varsigma }\bar{\textrm{Q}_{\varsigma }}+\delta \textrm{Q}^{\varsigma }\textrm{Q}_{\varsigma }-2 \textrm{Q}^{\varsigma }\delta \bar{\textrm{Q}_{\varsigma }} + \textrm{Q}^{\varsigma }\delta \textrm{Q}_{\varsigma }), \\= & {} -\frac{1}{4}[\textrm{Q}_{\lambda \nu \varsigma }\nabla ^{\lambda }\delta \textrm{g}^{\nu \varsigma }-\textrm{Q}^{\lambda \nu \varsigma } \nabla _{\lambda }\delta \textrm{g}_{\nu \varsigma }-2\textrm{Q}_{\varsigma \lambda \nu } \nabla ^{\lambda }\delta \textrm{g}^{\nu \varsigma } \\{} & {} +2\textrm{Q}^{\lambda \nu \varsigma }\nabla _{\varsigma }\delta \textrm{g}_{\lambda \nu }+ 2\bar{\textrm{Q}_{\varsigma }}\textrm{g}^{\mu \nu }\nabla ^{\varsigma }\delta \textrm{g}_{\mu \nu }+2\textrm{Q}^{\varsigma }\nabla ^{\xi }\delta \textrm{g}_{\varsigma \xi } \\{} & {} +2\bar{\textrm{Q}_{\varsigma }} \textrm{g}_{\mu \nu }\nabla ^{\varsigma }\delta \textrm{g}^{\mu \nu }-\textrm{Q}_{\varsigma }\nabla ^{\xi }\textrm{g} ^{\mu \nu }\delta \textrm{g}_{\mu \nu }-\textrm{Q}_{\varsigma }\textrm{g}_{\mu \nu }\nabla ^{\varsigma }\delta \textrm{g}^{\mu \nu } \\{} & {} -\textrm{Q}_{\varsigma } \textrm{g}^{\mu \nu } \nabla _{\varsigma } \delta \textrm{g}_{\mu \nu } -\textrm{Q}^{\varsigma }\textrm{g}_{\mu \nu }\nabla _{\varsigma }\delta \textrm{g}_{\mu \nu }]. \end{aligned}$$

We use the following relations to simplify the above equation

$$\begin{aligned} \delta \textrm{g}_{\mu \nu }= & {} -\textrm{g}_{\mu \lambda } \delta \textrm{g}^{\lambda \xi }\textrm{g}_{\xi \nu }-\textrm{Q}^ {\lambda \nu \varsigma } \nabla _{\lambda }\delta \textrm{g}_{\nu \varsigma }, \\ \delta \textrm{g}_{\nu \varsigma }= & {} -\textrm{Q}^{\lambda \nu \varsigma } \nabla _{\lambda }(-\textrm{g}_{\nu \mu }\delta \textrm{g}^{\mu \xi }\textrm{g}_{\xi \varsigma }), \\= & {} 2\textrm{Q}_{~~\varsigma }^{\lambda \nu }\textrm{Q}_{\lambda \nu \mu }\delta \textrm{g}^{\mu \varsigma } + \textrm{Q}_{\lambda \xi \varsigma }\nabla ^{\lambda }\textrm{g}^{\mu \varsigma } \\= & {} 2\textrm{Q}_{~~\nu }^{\lambda \xi }\textrm{Q}_{\lambda \xi \nu }\delta \textrm{g}^{\mu \nu }+\textrm{Q}_{\lambda \nu \varsigma }\nabla ^{\lambda } \textrm{g}^{\nu \varsigma }, \\ 2\textrm{Q}^{\lambda \nu \varsigma }\nabla _{\varsigma }\delta \textrm{g}_{\lambda \nu }= & {} -4\textrm{Q}_{\mu }^{~\xi \varsigma }\textrm{Q}_{\varsigma \xi \nu } \delta \textrm{g}^{\mu \nu }-2 \textrm{Q}_{\nu \varsigma \lambda }\nabla ^{\lambda }\delta \textrm{g}^{\nu \varsigma }, \\ -2\textrm{Q}^{\varsigma } \nabla ^{\xi } \delta \textrm{g}_{\varsigma \xi }= & {} 2\textrm{Q}^{\lambda } \textrm{Q}_{\nu \lambda \mu } \delta \textrm{g}^{\mu \nu }+ 2\textrm{Q}_{\mu }\bar{\textrm{Q}_{\nu }} \delta \textrm{g}^{\mu \nu } \\{} & {} +2\textrm{Q}_{\nu }\textrm{g}_{\lambda \varsigma }\nabla ^{\lambda } \textrm{g}^{\nu \varsigma }. \end{aligned}$$

Thus, we have

$$\begin{aligned} \delta \textrm{Q}=2\textrm{P}_{\lambda \nu \varsigma }\nabla ^{\lambda }\delta \textrm{g}^{\nu \varsigma }-(\textrm{P}_{\mu \lambda \xi }\textrm{Q}_{\nu } ^{\lambda \xi }-2 \textrm{P}_{\lambda \xi \nu }\textrm{Q}^{\lambda \xi } _{\nu })\delta \textrm{g}^{\mu \nu }, \end{aligned}$$

where

$$\begin{aligned} 2\textrm{P}_{\lambda \nu \varsigma }= & {} -\frac{1}{4}[2\textrm{Q} _{\lambda \nu \varsigma }-2\textrm{Q}_{\varsigma \lambda \nu } -2\textrm{Q}_{\nu \varsigma \lambda } \\{} & {} +2(\bar{\textrm{Q}}_{\lambda }-\textrm{Q}_{\lambda }) \textrm{g}_{\nu \varsigma }+2\textrm{Q}_{\nu }\textrm{g}_{\lambda \xi }], \\ 4(\textrm{P}_{\mu \lambda \xi }\textrm{Q}_{\nu }^{~~\lambda \xi }-2 \textrm{P}_{\lambda \xi \nu }\textrm{Q}^{\lambda \xi } _{~~\nu })= & {} 2\textrm{Q}^{\lambda \xi } _{~~\nu }\textrm{Q}_{\lambda \xi \mu }-4\textrm{Q}_{\mu } ^{~~\lambda \xi }\textrm{Q}_{\xi \lambda \nu }+2\textrm{Q}_{\lambda \mu \nu } \bar{\textrm{Q}}^{\lambda } \\{} & {} -\textrm{Q}^{\lambda }\textrm{Q}_{\lambda \mu \nu } +2\textrm{Q}^{\lambda }\textrm{Q}_{\nu \lambda \mu }+2\textrm{Q} _{\mu }\bar{\textrm{Q}_{\nu }}. \end{aligned}$$

Appendix C

The radial and tangential components of sound speed are given by

$$\begin{aligned} u_{sr}= & {} \bigg [a^{7}d^{2}r^{2}(3-2\eta )+4a^{6}cbdr^{2} (1+br^{2})(2\eta -3)+8cb^{3}(1+br^{2})^{10}d(-6 \\{} & {} -13\eta +br^{2}(17\eta -6))+8a^{2}cb^{2}d(1+br^{2})^{6} \big (-9-32\eta +br^{2}(-18+41\eta \\{} & {} +br^{2}(23\eta -9))\big )-2ab^{2}(1+br^{2})^{8}(d^{2}(1+br^{2}) (-23\eta -6+br^{2}(17\eta -6)) \\{} & {} +8c^{2}b(-3-14\eta +br^{2}(26\eta -3)))-4a^{4}cbd(1+br^{2}) ^{3}(3+14\eta +br^{2}(24 \\{} & {} -46\eta +br^{2}(9+40\eta )))+(1+br^{2})^{4}2a^{3}b(d^{2}(1+br^{2}) (12+36\eta +br^{2}(12 \\{} & {} -59\eta +25br^{2}\eta ))+2c^{2}b(14\eta +3+br^{2}(18-44\eta +br^{2} (15+38\eta )))) \\{} & {} +a^{5}(1+br^{2})^{2}\big (4c^{2}(3-2\eta )b^{2}r^{2}+d^{2}(3+14\eta +br^{2}(30-48\eta +br^{2} \\{} & {} \times (46\eta -9)))\big )\bigg ]\bigg [-40cb^{3}d(br^{2}-5)(1+br^{2}) ^{10}\eta +a^{7}d^{2}r^{2}(2\eta -3) \\{} & {} -4a^{6}cbr^{2}(1+br^{2})d(-3+2\eta )+10ab^{2}(1+br^{2})^{8} \big (d^{2}(br^{2}-7)(1+br^{2})\eta \\{} & {} -8c^{2}b(br^2-1)(2\eta -3)\big )+40a^{2}cb^{2}d(1+br^{2})^{6}(6-2 \eta -br^{2}\eta +b^{2}r^{4} \\{} & {} \times (11\eta -6))-4a^{4}cbd(1+br^{2})^{3}(5(-3+2\eta )+br^{2} (6-14\eta +br^{2} \\{} & {} \times (44\eta -51)))-2a^{3}b(1+br^{2})^{4}\big (-2c^{2}b(5+(-2 +17br^{2}))br^{2}(2\eta -3) \\{} & {} +5d^{2}(1+br^{2})(6+br^{2}(-7\eta +br^{2}(17\eta -6)))\big )+a^{5} (br^{2}+1+b(-7\eta \\{} & {} +br^{2}(17\eta -6)))+a^{5}(1+br^{2})^{2}(4(2\eta -3)c^{2}b^{2} r^{2}+d^{2}(5(2\eta -3)+br^{2} \\{} & {} \times (6-24\eta +br^{2}(74\eta -51))))\bigg ]^{-1}, \\ u_{st}= & {} \bigg [2(2a^{7}d^{2}r^{2}\eta -8a^{6}cbdr^{2}(1+br^{2}) \eta -4cb^{3}d(1+br^{2})^{10}((7\eta -6)r^{2}b \\{} & {} +12+\eta )+ab^{2}(1+br^{2})^{8}\big [-8c^{2}b(-6-8\eta +br^{2}(9+2\eta )) +d^{2}(1+br^{2}) \\{} & {} \times (18-\eta +br^{2}(7\eta -6))+2a^{2}cb^{2}d(1+br^{2})^{6}(-33-34\eta +br^{2} \\{} & {} \times (24-38\eta +br^{2}(16\eta -3)))-2a^{4}cbd(1+br^{2})^{3} (6+8\eta +br^{2} (-9 \\{} & {} +20\eta +br^{2}(15+28\eta )))+a^{5}(1+br^{2})^{2}(8c^{2}b^{2} r^{2}\eta +d^{2}(3+4\eta +br^{2} \\{} & {} \times (12\eta -3+br^{2}(3+8\eta ))))+a^{3}b(1+br^{2})^{4} (4c^{2}b(3+4\eta +br^{2}(-6 \\{} & {} +8\eta +br^{2}(9+16\eta )))-d^{2}(1+br^{2})(-3(7+6\eta )+br^{2} (-19\eta +27 \\{} & {} +br^{2}(23\eta -24))))\big ]\bigg ]\bigg [-40cb^{3}d(br^{2}-5) (1+br^{2})^{10}\eta +a^{7}(2\eta -3) \\{} & {} \times d^{2}r^{2}-4a^{6}cbdr^{2}(1+br^{2})(2\eta -3)+10ab^{2}(1+br^{2}) ^{8}(d^{2}(br^{2}-7) \\{} & {} \times (1+br^{2})\eta -8c^{2}b(br^{2}-1)(2\eta -3))+40a^{2}cdb^{2}d(1+br^{2})^{6}(-2\eta \\{} & {} +6+b^{2}r^{4}(11\eta -6)-br^{2}\eta )-4a^{4}cbd((1+br^{2})^{3}(5(-3+2\eta )+br^{2} \\{} & {} \times (6+br^{2}(44\eta -51)-14\eta ))-2a^{3}b(1+br^{2})^{4}(-2c^{2}b((-2+17br^{2}) \\{} & {} \times br^{2}+5)(-3+2\eta )+5d^{2}(1+br^{2})(6+br^{2}(-7\eta +br^{2}(-6+17\eta )))) \\{} & {} +a^{5}(1+br^{2})^{2}(4(2\eta -3)c^{2}b^{2}r^{2}+d^{2}(5(2\eta -3)+br^{2}(6-24\eta +br^{2} \\{} & {} \times (74\eta -51)))))\bigg ]^{-1}. \end{aligned}$$

Appendix D

The radial and tangential components of adiabatic index are given by

$$\begin{aligned} \Gamma _{r}= & {} \bigg [-6(1+br^{2})^{3}(2bd(1+br^{2})^{4} -2acb(1+br^{2})(3br^{2}-1)+a^{2}d \\{} & {} \times (5br^{2}-1))(2\eta -1)(a^{7}d^{2}r^{2}(3-2\eta ) +4a^{6}cbdr^{2}(2\eta -3) \\{} & {} \times (1+br^{2})+8cb^{3}d(1+br^{2})^{10}(-6-13\eta +br^{2}(17\eta -6))+8a^{2} \\{} & {} \times cb^{2}d(1+br^{2})^{6}(-9-32\eta +br^{2}(-18+41 \eta +br^{2}(23\eta -9))) \\{} & {} -2ab^{2}(1+br^{2})^{8}(d^{2}(1+br^{2})(-6-23\eta +br^{2} (17\eta -6))+8c^{2}b \\{} & {} \times (-3-14\eta +br^{2}(26\eta -3)))-4a^{4}cbd(1+br^{2})^{3} (3+14\eta +br^{2} \\{} & {} \times (24-46\eta +br^{2}(9+40\eta )))+2a^{3}b(1+br^{2})^{4} (d^{2}(1+br^{2})(36\eta \\{} & {} +12+br^{2}(12-59\eta +25br^{2}\eta ))+2c^{2}b(3+14\eta +br^{2} (18-44\eta \\{} & {} +br^{2}(15+38\eta ))))+a^{5}(1+br^{2})^{2}(4c^{2}b^{2}r^{2} (3-2\eta )+d^{2}(3+14\eta \\{} & {} +br^{2}(30-48\eta +br^{2}(46\eta -9)))))\bigg ]\bigg [(a^{4}dr^{2} (2\eta -3)-2a^{3}cbr^{2} \\{} & {} (1+br^{2})(2\eta -3)+3a^{2}d(1+br^{2})^{3}(-1-2\eta +5br^{2} (2\eta -1)) \\{} & {} +2bd(1+br^{2})^{6}(-3(2+\eta )+br^{2}(17\eta -6))-2acb(1+br^{2}) ^{4}(-3 \\{} & {} -6\eta +br^{2}(26\eta -3)))(a^{7}d^{2}r^{2}(3-2\eta )+40cb^{3} d(1+br^{2})^{10}\eta \\{} & {} \times (br^{2}-5)+4a^{6}cbdr^{2}(1+br^{2})(2\eta -3)+10ab^{2} (1+br^{2})^{8} \\{} & {} \times (d^{2}(7+br^{2}(6-br^{2}))\eta +8c^{2}b(br^{2}-1) (2\eta -3))-40a^{2}cb^{2}d \\{} & {} \times (1+br^{2})^{6}(6-2\eta -br^{2}\eta +b^{2}r^{4}(11\eta -6)) +4a^{4}cbd(1+br^{2})^{3} \\{} & {} \times (5(2\eta -3)+br^{2}(6-14\eta +br^{2}(44\eta -51)))+2a^{3} b(1+br^{2})^{4} \\{} & {} \times (-2c^{2}b(5+br^{2}(17br^{2}-2))(2\eta -3)+5d^{2}(1+br^{2}) (6+br^{2} \\{} & {} \times (-7\eta +br^{2}(17\eta -6))))-a^{5}(1+br^{2})^{2}(4c^{2} b^{2}r^{2}(2\eta -3) \\{} & {} +d^{2}(5(2\eta -3)+br^{2}(6-24\eta +br^{2}(74\eta -51)))))\bigg ]^{-1}, \\ \Gamma _{t}= & {} \bigg [6(a^{2}d-2acb(1+br^{2})-2bd(1+br^{2})^{3}) (a^{2}r^{2}-2(br^{2}-1) \\{} & {} \times (1+br^{2})^{3})(2\eta -1)(2a^{7}d^{2}r^{2}\eta -8a^{6}cbdr^{2} (1+br^{2})\eta -4cd \\{} & {} \times b^{3}(1+br^{2})^{10}(12+\eta +br^{2}(7\eta -6))+ab^{2} (1+br^{2})^{8}(-8c^{2}b \\{} & {} \times (-6-8\eta +br^{2}(9+2\eta ))+d^{2}(1+br^{2})(18-\eta +br^{2} (7\eta -6))) \\{} & {} \times 2a^{2}cb^{2}d(1+br^{2})^{6}(-33-34\eta +br^{2}(24-38\eta +br^{2}(16\eta -3))) \\{} & {} -2a^{4}cbd(1+br^{2})^{3}(6+8\eta +br^{2}(-9+20\eta +br^{2}(15 +28\eta )))+a^{5} \\{} & {} \times (1+br^{2})^{2}(8c^{2}b^{2}r^{2}\eta +d^{2}(3+4\eta +br^{2} (-3+12\eta +br^{2}(3+8\eta )))) \\{} & {} +a^{3}b(1+br^{2})^{4}(4c^{2}b(3+4\eta +br^{2}(-6+8\eta +br^{2}(9 +16\eta )))-d^{2} \\{} & {} \times (1+br^{2})(-3(7+6\eta )+br^{2}(27-19\eta +br^{2}(23\eta -24) ))))\bigg ] \\{} & {} \times \bigg [(4a^{4}dr^{2}\eta -8a^{3}cbr^{2}(1+br^{2})\eta +3a^{2} d(1+br^{2})^{3}(1+2\eta +br^{2} \\{} & {} \times (2\eta -1))+2acb(1+br^{2})^{4}(-3-6\eta +br^{2}(9+2\eta )) +2(1+br^{2})^{6} \\{} & {} \times bd(3(2+\eta )+br^{2}(7\eta -6)))(-40cb^{3}d(br^{2}-5)(1+br^{2}) ^{10}\eta \\{} & {} +a^{7}d^{2}r^{2}(2\eta -3)-4a^{6}cbdr^{2}(1+br^{2})(2\eta -3)+10ab^{2} (1+br^{2})^{8} \\{} & {} \times (d^{2}(br^{2}-7)(1+br^{2})\eta -8c^{2}b(br^{2}-1)(2\eta -3) +40a^{2}cb^{2}d \\{} & {} \times (1+br^{2})^{6}(6-2\eta -br^{2}\eta +b^{2}r^{4}(11\eta -6)) -4a^{4}cdb(1+br^{2})^{3} \\{} & {} \times (5(2\eta -3)+br^{2}(6-14\eta +br^{2}(44\eta -51)))-2a^{3} b(1+br^{2})^{4}(-2 \\{} & {} \times c^{2}b(5+br^{2}(17br^{2}-2))(2\eta -3)+5d^{2}(1+br^{2}) (6+br^{2}(-7\eta \\{} & {} +br^{2}(17\eta -6))))+a^{5}(1+br^{2})^{2}(4c^{2}b^{2}r^{2} (2\eta -3)+d^{2}(5(2\eta -3) \\{} & {} +br^{2}(6-24\eta +br^{2}(74\eta -51))))))\big ]^{-1}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gul, M.Z., Sharif, M. & Arooj, A. Physical analysis of spherical stellar structures in \(f(\textrm{Q},\textrm{T})\) theory. Gen Relativ Gravit 56, 45 (2024). https://doi.org/10.1007/s10714-024-03234-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-024-03234-8

Keywords

Navigation