Skip to main content
Log in

Compact stellar objects in \(f({\mathfrak {R}}\), \({{\varvec{\mathbb {T}}}}^{2})\) gravity

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The main motivation of this paper is to examine the viability and stability of compact stellar objects with isotropic matter configuration in \(f({\mathfrak {R}},{\mathbb {T}}^{2})\) theory. For this reason, we take a static spherical metric in the inner and modified spherically symmetric vacuum solution in the outer region of a star. We use Krori–Barua solutions and consider three viable models of this theory to analyze the physical characteristics of Vela X-1, SAX J 1808.4-3658 and 4U 1820-30 compact star candidates. We then investigate the behavior of energy density, pressure, equation-of-state parameters and energy bounds in the inner region of these stellar objects. The stability of these stellar models is also examined via causality condition and adiabatic index. It is found that the obtained results are consistent with the observational data indicating that this modified theory is viable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W Baade and F Zwicky, Phys. Rev. 46, 76 (1934)

    Article  ADS  Google Scholar 

  2. M S Longair, High Energy Astrophysics (Cambridge Univeristy Press, Cambridge, 1994); P Ghosh, Rotation and Accretion Powered Pulsars (World Scientific, Singapore, 2007)

  3. M K Mak and T Harko, Int. J. Mod. Phys. D 13, 149 (2004)

    Article  ADS  Google Scholar 

  4. S K M Hossein et al, Int. J. Mod. Phys. D 21, 1250088 (2012)

    Article  ADS  Google Scholar 

  5. M Kalam et al, Eur. Phys. J. C 72, 2248 (2012)

    Article  ADS  Google Scholar 

  6. F Rahaman et al, Gen. Relativ. Gravit. 44, 107 (2012); Eur. Phys. J. C 72, 2071 (2012)

  7. S Perlmutter et al, Bull. Am. Astron. Soc. 29, 1351 (1997); A V Filippenko and A G Riess, Phys. Rep. 307, 31 (1998); M Tegmark et al, Phys. Rev. D 69, 103501 (2004); D N Spergel et al, Astrophys. J. Suppl. 170, 377 (2007)

  8. G Cognola et al, Phys. Rev. D 77, 046009 (2008); A D Felice and S R Tsujikawa, Living Rev. Relativ. 13, 3 (2010); S Nojiri and S D Odintsov, Phys. Rep. 505, 59 (2011)

  9. S Nojiri and S D Odintsov, Phys. Lett. B 599, 137 (2004)

    Article  ADS  Google Scholar 

  10. T Harko et al, Phys. Rev. D 84, 024020 (2011); M Sharif and M Z Gul, Mod. Phys. Lett. A 36, 30 (2021); Eur. Phys. J. Plus 133, 8 (2018); Int. J. Mod. Phys. D 28, 1950054 (2019); Chin. J. Phys. 57, 337 (2019)

  11. Z Haghani et al, Phys. Rev. D 88, 044023 (2013)

    Article  ADS  Google Scholar 

  12. N Katirci and M Kavuk, Eur. Phys. J. Plus 129, 163 (2014)

    Article  Google Scholar 

  13. M Roshan and F Shojai, Phys. Rev. D 94, 044002 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. C V R Board and J D Barrow, Phys. Rev. D 96, 123517 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  15. N Nari and M Roshan, Phys. Rev. D 98, 024031 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  16. S Bahamonde, M Marciu and P Rudra, Phys. Rev. D 100, 083511 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. P Rudra and B Pourhassan, Phys. Dark Universe 33, 100849 (2021)

    Article  Google Scholar 

  18. M Sharif and M Z Gul, Phys. Scr. 96, 025002 (2021); 96, 125007 (2021); Eur. Phys. J. Plus 136, 503 (2021); Chin. J. Phys. 80, 58 (2022)

  19. M Sharif and M Z Gul, Int. J. Mod. Phys. A 36, 2150004 (2021); Chin. J. Phys. 71, 365 (2021); Universe 7, 154 (2021); Int. J. Geom. Methods Mod. Phys. 19, 2250012 (2021); Mod. Phys. Lett. A 37, 2250005 (2022)

  20. M Sharif and S Naz, Universe 8, 142 (2022); Eur. Phys. J. Plus 137, 421 (2022); Int. J. Mod. Phys. D 31, 2240008 (2022); Mod. Phys. Lett. A 37, 2250065 (2022); ibid. 2250125

  21. S Arapoglu, C Deliduman and K Y Eksi, J. Cosmol. Astropart. Phys. 07, 020 (2011)

    Article  ADS  Google Scholar 

  22. A V Astashenok, S Capozziello and S D Odintsov, Phys. Rev. D 89, 103509 (2014)

    Article  ADS  Google Scholar 

  23. G Abbas et al, Astrophys. Space Sci. 357, 158 (2015)

    Article  ADS  Google Scholar 

  24. M F Shamir and S Zia, Int. J. Mod. Phys. D 27, 1850082 (2018)

    Article  ADS  Google Scholar 

  25. M Zubair, G Abbas and I Noureen, Astrophys. Space Sci. 361, 8 (2016)

    Article  ADS  Google Scholar 

  26. M Sharif and A Waseem, Can. J. Phys. 94, 1024 (2016)

    Article  ADS  Google Scholar 

  27. M Sharif and A Naeem, Chin. J. Phys. 66, 765 (2020); Int. J. Mod. Phys. A 35, 2050121 (2020)

  28. M Sharif and M Z Gul, Adv. Astron. 2021, 6663502 (2021)

    Article  ADS  Google Scholar 

  29. M Sharif and M Z Gul, Phys. Scr. 96, 105001 (2021); pramana 96, 153 (2022)

  30. K D Krori and J Barua, J. Phys. A: Math. Gen. 8, 508 (1975)

    Article  ADS  Google Scholar 

  31. S Kalita and B Mukhopadhyay, Eur. Phys. J. C 79, 877 (2019)

    Article  ADS  Google Scholar 

  32. H A Buchdahl, Phys. Rev. 116, 1027 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  33. A A Starobinsky, Phys. Lett. B 91, 99 (1980)

    Article  ADS  Google Scholar 

  34. M Sharif and A Siddiqa, Int. J. Mod. Phys. D 27, 1850065 (2018)

    Article  ADS  Google Scholar 

  35. S Tsujikawa, Phys. Rev. D 77, 023507 (2008)

    Article  ADS  Google Scholar 

  36. A A Starobinsky, J. Exp. Theor. Phys. 86, 157 (2007)

    Article  Google Scholar 

  37. M Sharif and A Waseem, Int. J. Mod. Phys. D 28, 1950033 (2019); Can. J. Phys. 94, 1024 (2016)

  38. B V Ivanov, Phys. Rev. D 65, 104011 (2002)

    Article  ADS  Google Scholar 

  39. L Herrera, Phys. Lett. A 165, 206 (1992)

    Article  ADS  Google Scholar 

  40. S Chandrasekhar, Astrophys. J. 140, 417 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  41. M F Shamir and M Ahmad, Eur. Phys. J. C 77, 12 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Sharif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, M., Gul, M.Z. Compact stellar objects in \(f({\mathfrak {R}}\), \({{\varvec{\mathbb {T}}}}^{2})\) gravity. Pramana - J Phys 97, 122 (2023). https://doi.org/10.1007/s12043-023-02598-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02598-x

Keywords

PACS Nos

Navigation