Skip to main content
Log in

Relativistic correction to black hole entropy

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this paper, we study the relativistic correction to Bekenstein–Hawking entropy in the canonical ensemble and isothermal–isobaric ensemble and apply it to the cases of non-rotating BTZ and AdS-Schwarzschild black holes. This is realized by generalizing the equations obtained using Boltzmann–Gibbs (BG) statistics with its relativistic generalization, Kaniadakis statistics, or \(\kappa \)-statistics. The relativistic corrections are found to be logarithmic in nature and it is observed that their effect becomes appreciable in the high-temperature limit suggesting that the entropy corrections must include these relativistically corrected terms while taking the aforementioned limit. The non-relativistic corrections are recovered in the \(\kappa \rightarrow 0\) limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. See Appendix B for a derivation.

  2. We set \(k_B=1\) in this paper.

  3. Analogous to the single Laplace transform, this is the \(\kappa \)-deformed generalization of the double Laplace transform.

References

  1. Solodukhin, S.N.: Conical singularity and quantum corrections to the entropy of a black hole. Phys. Rev. D 51(2), 609 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  2. Fursaev, D.V.: Temperature and entropy of a quantum black hole and conformal anomaly. Phys. Rev. D 51(10), R5352 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  3. Mann, R.B., Solodukhin, S.N.: Conical geometry and quantum entropy of a charged Kerr black hole. Phys. Rev. D 54(6), 3932 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  4. Carlip, S.: Logarithmic corrections to black hole entropy, from the Cardy formula. Class. Quantum Gravity 17(20), 4175 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  5. Govindarajan, T.R., Kaul, R.K., Suneeta, V.: Logarithmic correction to the Bekenstein–Hawking entropy of the BTZ black hole. Class. Quantum Gravity 18(15), 2877 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  6. Banerjee, S., Gupta, R.K., Sen, A.: Logarithmic corrections to extremal black hole entropy from quantum entropy function. J. High Energy Phys. 2011(3), 1–42 (2011)

    Article  MathSciNet  Google Scholar 

  7. Sen, A.: Logarithmic corrections to rotating extremal black hole entropy in four and five dimensions. Gen. Relativ. Gravit. 44, 1947–1991 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  8. Mandal, I., Sen, A.: Black hole microstate counting and its macroscopic counterpart. Class. Quantum Gravity 27(21), 214003 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  9. Fursaev, D.V., Solodukhin, S.N.: On one-loop renormalization of black-hole entropy. Phys. Lett. B 365(1–4), 51–55 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  10. Kaul, R.K., Majumdar, P.: Logarithmic correction to the Bekenstein–Hawking entropy. Phys. Rev. Lett. 84(23), 5255 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  11. Das, S., Majumdar, P., Bhaduri, R.K.: General logarithmic corrections to black-hole entropy. Class. Quantum Gravity 19(9), 2355 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  12. Mukherji, S., Pal, S.S.: Logarithmic corrections to black hole entropy and ads/cft correspondence. J. High Energy Phys. 2002(05), 026 (2002)

    Article  MathSciNet  Google Scholar 

  13. Ghosh, A., Mukherji, S., Bhamidipati, C.: Novel logarithmic corrections to black hole entropy. Class. Quantum Gravity 39(22), 225011 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  14. Kastor, D., Ray, S., Traschen, J.: Enthalpy and the mechanics of ads black holes. Class. Quantum Gravity 26(19), 195011 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  15. Ghosh A.: Statistical ensembles and logarithmic corrections to black hole entropy. Class. Quantum Gravity (2023)

  16. Tsallis, C.: Some comments on Boltzmann–Gibbs statistical mechanics. Chaos Solitons & Fractals 6, 539–559 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  17. Luciano, G.G.: Gravity and cosmology in Kaniadakis statistics: current status and future challenges. Entropy 24(12), 1712 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  18. Kaniadakis, G.: Non-linear kinetics underlying generalized statistics. Phys. A Stat. Mech. Appl. 296(3–4), 405–425 (2001)

    Article  Google Scholar 

  19. Kaniadakis, G.: Statistical mechanics in the context of special relativity. Phys. Rev. E 66(5), 056125 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  20. Kaniadakis, G.: Statistical mechanics in the context of special relativity. ii. Phys. Rev. E 72(3), 036108 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  21. Sheykhi A.: Corrections to Friedmann equations inspired by Kaniadakis entropy. arXiv preprintarXiv:2302.13012 (2023)

  22. Lymperis, A., Basilakos, S., Saridakis, E.N.: Modified cosmology through Kaniadakis horizon entropy. Eur. Phys. J. C 81(11), 1037 (2021)

    Article  ADS  Google Scholar 

  23. Abreu, E.M.C., Neto, J.A.: Black holes thermodynamics from a dual Kaniadakis entropy. Europhys. Lett. 133(4), 49001 (2021)

    Article  ADS  Google Scholar 

  24. Moradpour, H., Ziaie, A.H., Zangeneh, M.K.: Generalized entropies and corresponding holographic dark energy models. Eur. Phys. J. C 80(8), 732 (2020)

    Article  ADS  Google Scholar 

  25. Ghosh, A., Mukherji, S., Bhamidipati, C.: Logarithmic corrections to the entropy function of black holes in the open ensemble. Nucl. Phys. B 982, 115902 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naman Kumar.

Ethics declarations

Conflict of interest

The author declares no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Kaniadakis statistics (\(\kappa \)-statistics): a brief review

\(\kappa \)-statistics is a relativistic generalization of the Boltzmann–Gibbs (BG) statistics. The \(\kappa \)-entropy emerges from the relativistic generalization of the Boltzmann–Gibbs–Shannon (BGS) entropy and generates power law-tailed distribution which in the limit \(\kappa \rightarrow 0\) reproduces the ordinary exponential distribution. This \(\kappa \)-generalized statistics has been applied successfully to a wide range of problems. Formally, it is a one-parameter deformation of the ordinary exponential and logarithmic functions as follows

$$\begin{aligned}{} & {} e_\kappa (x)=(\sqrt{1+\kappa ^2x^2}+\kappa x)^{\frac{1}{\kappa }} \end{aligned}$$
(A.1)
$$\begin{aligned}{} & {} \ln _\kappa (x)=\frac{x^\kappa -x^{-\kappa }}{2\kappa } \end{aligned}$$
(A.2)

The \(\kappa \)-exponential and \(\kappa \)-logarithm for the case \(0<\kappa <1\) can also be written as

$$\begin{aligned}{} & {} e_\kappa (x)=e\bigg (\frac{1}{\kappa }{{\,\textrm{arcsinh}\,}}(\kappa x)\bigg ) \end{aligned}$$
(A.3)
$$\begin{aligned}{} & {} \ln _\kappa (x)=\frac{1}{\kappa }\sinh \bigg (\kappa (\ln (x))\bigg ) \end{aligned}$$
(A.4)

Some of the basic properties of the \(\kappa \)-exponential are as follows:

$$\begin{aligned}&e_\kappa (x)\in {\mathbb {C}}^\infty ({\mathbb {R}}) \end{aligned}$$
(A.5)
$$\begin{aligned}&\frac{d}{dx}e_\kappa (x)>0 \end{aligned}$$
(A.6)
$$\begin{aligned}&\frac{d^2}{dx^2}e_\kappa (x)>0 \end{aligned}$$
(A.7)
$$\begin{aligned}&e_\kappa (-\infty )=0^+ \end{aligned}$$
(A.8)
$$\begin{aligned}&e_\kappa (+\infty )=+\infty \end{aligned}$$
(A.9)
$$\begin{aligned}&e_\kappa (0)=1 \end{aligned}$$
(A.10)
$$\begin{aligned}&e_\kappa (-x)e_\kappa (x)=1 \end{aligned}$$
(A.11)

For a real number r, the following property holds

$$\begin{aligned}{}[e_\kappa (x)]^r=e_{\kappa /r}(rx) \end{aligned}$$
(A.12)

Similarly, the \(\kappa \)-logarithm has following basic properties:

$$\begin{aligned}&\ln _\kappa (x)\in {\mathbb {C}}^\infty (\mathbb {R^+}) \end{aligned}$$
(A.13)
$$\begin{aligned}&\frac{d}{dx}\ln _\kappa (x)>0 \end{aligned}$$
(A.14)
$$\begin{aligned}&\frac{d^2}{dx^2}\ln _\kappa (x)<0 \end{aligned}$$
(A.15)
$$\begin{aligned}&\ln _\kappa (0^+)=\infty \end{aligned}$$
(A.16)
$$\begin{aligned}&\ln _\kappa (1)=0 \end{aligned}$$
(A.17)
$$\begin{aligned}&\ln _\kappa (+\infty )=+\infty \end{aligned}$$
(A.18)
$$\begin{aligned}&\ln _\kappa (1/x)=-\ln _\kappa (x) \end{aligned}$$
(A.19)

For a real number r, the following property holds

$$\begin{aligned} \ln _\kappa (x^r)=r\ln _{r\kappa }(x) \end{aligned}$$
(A.20)

For any x, \(y\in {\mathbb {R}}\) and \(|\kappa |<1\), the \(\kappa \)-sum is defined as

$$\begin{aligned} x{{\mathop {\oplus }\limits ^{\kappa }}}y=x\sqrt{1+\kappa ^2y^2}+y\sqrt{1+\kappa ^2x^2} \end{aligned}$$
(A.21)

which is equivalent to

$$\begin{aligned} x{{\mathop {\oplus }\limits ^{\kappa }}}y=\frac{1}{\kappa }\sinh ({{\,\textrm{arcsinh}\,}}(\kappa x)+{{\,\textrm{arcsinh}\,}}(\kappa y)) \end{aligned}$$
(A.22)

The two important relations based on \(\kappa \)-sum, useful for our discussion are:

$$\begin{aligned} e_\kappa (x{{\mathop {\oplus }\limits ^{\kappa }}}y)&=e_\kappa (x)e_\kappa (y) \end{aligned}$$
(A.23)
$$\begin{aligned} \ln _\kappa (xy)&=\ln _\kappa (x){{\mathop {\oplus }\limits ^{\kappa }}}\ln _\kappa (y) \end{aligned}$$
(A.24)

Finally, we define \(\kappa \)-Laplace transform and its inverse as

$$\begin{aligned} F_\kappa (s)&={\mathcal {L}}_\kappa \{f(t)\}(s)=\int \limits _0^\infty f(t)[e_\kappa (-t)]^s dt \end{aligned}$$
(A.25)
$$\begin{aligned} f(t)&={\mathcal {L}}_\kappa ^{-1}\{F_\kappa (s)\}(t)=\frac{1}{2\pi i}\int \limits _{c-i\infty }^{c+i\infty } \frac{F_\kappa (s)[e_\kappa (t)]^s}{\sqrt{1+\kappa ^2t^2}}ds \end{aligned}$$
(A.26)

The ordinary Laplace transform and its inverse are recovered in the limit \(\kappa \rightarrow 0\).

Appendix B: relation between \(\kappa \)-deformed entropy and \(\kappa \)-deformed partition function

We start with the \(\kappa \)-distribution given as

$$\begin{aligned} \rho ^i_\kappa =\frac{e_\kappa (-\beta E_i)}{{\mathcal {Z}}_\kappa } \end{aligned}$$
(B.1)

\(\mathcal {Z_\kappa }\) is the normalization constant called the \(\kappa \)-deformed partition function. The \(\kappa \)-deformed entropy gives

$$\begin{aligned} S_\kappa&=-\sum _i\rho ^i_\kappa \ln _\kappa \rho ^i_\kappa =-\sum _i \rho ^i_\kappa [\ln _\kappa (e_\kappa (-\beta E_i)){{\mathop {\oplus }\limits ^{\kappa }}}(-\ln _\kappa {\mathcal {Z}}_\kappa )] \end{aligned}$$
(B.2)
$$\begin{aligned}&=-\sum _i \rho ^i_\kappa [-\beta E_i{{\mathop {\oplus }\limits ^{\kappa }}}(-\ln _\kappa {\mathcal {Z}}_\kappa )] \end{aligned}$$
(B.3)

Here, we have used the properties of \(\kappa \)-deformed log, \(\ln _\kappa (xy)=\ln _\kappa x{{\mathop {\oplus }\limits ^{\kappa }}}\ln _\kappa y\) and \(\ln _\kappa (\frac{1}{x})=-\ln _\kappa x\). Using \(\kappa \)-sum, we obtain the above relation as

$$\begin{aligned} S_\kappa =\sum _i \rho ^i_\kappa [\beta E_i\sqrt{1+(\kappa \ln _\kappa {\mathcal {Z}}_\kappa })^2+\ln _\kappa {\mathcal {Z}}_\kappa \sqrt{1+(\kappa \beta E_i)^2}] \end{aligned}$$
(B.4)

Since \(\sum _i\rho ^i_\kappa =1\) and \(\sum _i\rho ^i_\kappa E_i=\langle E\rangle =U\), we have

$$\begin{aligned} S_\kappa&=\beta \bigg (\sum _i\rho ^i_\kappa E_i\bigg )\sqrt{1+(\kappa \ln _\kappa {\mathcal {Z}}_\kappa )^2}+\ln _\kappa {\mathcal {Z}}_\kappa \sqrt{\bigg (\sum _i\rho ^i_\kappa \bigg )^2+\bigg (\kappa \beta \sum _i\rho ^i_\kappa E_i\bigg )^2} \end{aligned}$$
(B.5)
$$\begin{aligned}&=\beta U\sqrt{1+(\kappa \ln _\kappa {\mathcal {Z}}_\kappa )^2}+\ln _\kappa {\mathcal {Z}}_\kappa \sqrt{1+(\kappa \beta U)^2} \end{aligned}$$
(B.6)

This gives

$$\begin{aligned} S_\kappa =\ln _\kappa {\mathcal {Z}}_\kappa {{\mathop {\oplus }\limits ^{\kappa }}}\beta U \end{aligned}$$
(B.7)

which is equal to Eq. (2.4) of the main text.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N. Relativistic correction to black hole entropy. Gen Relativ Gravit 56, 47 (2024). https://doi.org/10.1007/s10714-024-03228-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-024-03228-6

Keywords

Navigation