Skip to main content
Log in

Black hole thermodynamics in Sharma–Mittal generalized entropy formalism

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Using the Sharma–Mittal entropy, we study some properties of the Schwarzschild and Schwarzschild-de Sitter black holes. The results are compared with those obtained by attributing the Bekenstein entropy bound to the mentioned black holes. Our main results show that while the Schwarzschild black hole is always stable in the micro-canonical ensemble, it can be stable in the canonical ensemble if its mass is bigger than the mass of the coldest Schwarzschild black hole. A semi-classical analysis has also been used to find an approximate relation between the entropy free parameters. Throughout the paper, we use units \(c=G=\hbar =k_B=1\), where \(k_B\) denotes the Boltzmann constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jacobson, T.: Phys. Rev. Lett. 75, 1260 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  2. Kaburaki, O., Okamoto, I., Katz, J.: Phys. Rev. D 47, 2234 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  3. Katz, J., Okamoto, I., Kaburaki, O.: Class. Quant. Gravit. 10, 1323 (1993)

    Article  ADS  Google Scholar 

  4. Kaburaki, O.: Gen. Relativ. Gravit. 28, 843 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  5. Arcioni, G., Lozano-Tellechea, E.: Phys. Rev. D 72, 104021 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  6. Gell-Mann, M., Tsallis, C.: Nonextensive Entropy-Interdisciplinary Applications. Oxford University Press, New York (2004)

    MATH  Google Scholar 

  7. Abe, S.: Foundations of Nonextensive Statistical Mechanics. In: Sengupta, A. (ed.) Chaos, Nonlinearity, Complexity. Studies in Fuzziness and Soft Computing, vol. 206. Springer, Berlin (2006)

    Google Scholar 

  8. Rényi, A.: Probability Theory. North-Holland, Amsterdam (1970)

    MATH  Google Scholar 

  9. Abe, S.: Phys. Rev. E 63, 061105 (2001)

    Article  ADS  Google Scholar 

  10. Touchette, H.: Phys. A 305, 84 (2002)

    Article  MathSciNet  Google Scholar 

  11. Masi, M.: Phys. Lett. A 338, 217 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  12. Biró, T.S., Ván, P.: Phys. Rev. E 83, 061147 (2011)

    Article  ADS  Google Scholar 

  13. Majhi, A.: Phys. Lett. B 775, 32 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  14. Biró, T.S.: Phys. A 392, 3132 (2013)

    Article  MathSciNet  Google Scholar 

  15. Biró, T.S., et al.: Eur. Phys. J. A 49, 110 (2013)

    Article  ADS  Google Scholar 

  16. Abreu, E.M.C., Ananias Neto, J., Mendes, A.C.R., Oliveira, W.: Phys. A 392, 5154 (2013)

    Article  MathSciNet  Google Scholar 

  17. Abreu, E.M.C.: J. Ananias Neto. Phys. Lett. B 727, 524 (2013)

    Article  ADS  Google Scholar 

  18. Barboza Jr., E.M., Nunes, R.C., Abreu, E.M.C., Neto, J.A.: Phys. A Stat. Mech. Appl. 436, 301 (2015)

    Article  Google Scholar 

  19. Moradpour, H.: Int. J. Theor. Phys. 55, 4176 (2016)

    Article  MathSciNet  Google Scholar 

  20. Nunes, R.C., et al.: JCAP 08, 051 (2016)

    Article  ADS  Google Scholar 

  21. Komatsu, N.: Eur. Phys. J. C 77, 229 (2017)

    Article  ADS  Google Scholar 

  22. Moradpour, H., Bonilla, A., Abreu, E.M.C., Neto, J.A.: Phys. Rev. D 96, 123504 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  23. Czinner, V.G., Iguchi, H.: Phys. Lett. B 752, 306 (2016)

    Article  ADS  Google Scholar 

  24. Czinner, V.G., Mena, F.C.: Phys. Lett. B 758, 9 (2016)

    Article  ADS  Google Scholar 

  25. Sayahian Jahromi, A., et al.: Phys. Lett. B 780, 21 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  26. Demirel, E.C.G.: Can. J. Phys. https://doi.org/10.1139/cjp-2018-0784

  27. Jawad, A., et al.: Symmetry 10, 635 (2018)

    Article  Google Scholar 

  28. Sadri, E., Khurshudyan, M.: arXiv:1809.07595v2

  29. Younas, M., et al.: AHEP 2019, 1287932 (2019)

    Google Scholar 

  30. Tavayef, M., Sheykhi, A., Bamba, K., Moradpour, H.: Phys. Lett. B 781, 195 (2018)

    Article  ADS  Google Scholar 

  31. Ghaffari, S., et al.: Phys. Dark Univ. 23, 100246 (2019)

    Article  Google Scholar 

  32. Moradpour, H., Sheykhi, A., Corda, C., Salako, I.G.: Phys. Lett. B 783, 82 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  33. Moradpour, H., et al.: Eur. Phys. J. C 78, 829 (2018)

    Article  ADS  Google Scholar 

  34. Abreu, E.M.C., et al.: Eur. Phys. Lett. 124, 30003 (2018)

    Article  ADS  Google Scholar 

  35. Bialas, A., Czyz, W.: Euro. Phys. Lett. 83, 60009 (2018)

    Article  Google Scholar 

  36. Belin, A., Maloney, A., Matsuura, S.: arXiv:1306.2640

  37. Biró, T.S., Czinner, V.G.: Phys. Lett. B 726, 861 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  38. Czinnera, V.G., Iguchia, H.: Phys. Lett. B 752, 306 (2016)

    Article  ADS  Google Scholar 

  39. Czinnera, V.G., Iguchia, H.: Eur. Phys. J. C 77, 892 (2017)

    Article  ADS  Google Scholar 

  40. Tsallis, C.: Introduction to Non-Extensive Statistical Mechanics: Approaching a Complex World. Springer, Berlin (2009)

    MATH  Google Scholar 

  41. Tsallis, C.: J. Stat. Phys. 52, 50 (1988)

    Article  Google Scholar 

  42. Tsallis, C.: Phys. A 221, 277 (1995)

    Article  MathSciNet  Google Scholar 

  43. Tsallis, C.: Braz. J. Phys. 29, 1 (1999)

    Article  ADS  Google Scholar 

  44. Tsallis, C.: Eur. Phys. J. A 40, 257 (2009)

    Article  ADS  Google Scholar 

  45. Wang, Q.A.: Euro. Phys. J. B 26, 357 (2002)

    ADS  Google Scholar 

  46. Wang, Q.A., Le Méhauté, A.: J. Math. Phys. 43, 5079 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  47. Poincara, H.: Acta Math. 7, 259 (1885)

    Article  MathSciNet  Google Scholar 

  48. Unruh, W.G.: Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  49. Hawking, S.W.: Black hole explosions. Nature 248, 30 (1974)

    Article  ADS  Google Scholar 

  50. Hawking, S.W., Page, Don N.: Thermodynamics of black holes in anti-de Sitter space. Commun. Math. Phys. 87, 577 (1983)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

The work of S. Ghaffari has been supported financially by Research Institute for Astronomy and Astrophysics of Maragha (RIAAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ghaffari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaffari, S., Ziaie, A.H., Moradpour, H. et al. Black hole thermodynamics in Sharma–Mittal generalized entropy formalism. Gen Relativ Gravit 51, 93 (2019). https://doi.org/10.1007/s10714-019-2578-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2578-2

Keywords

Navigation