Skip to main content
Log in

Correlated stability conjecture for AdS black holes in higher dimensional Ricci cubic gravity

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We investigate the correlated stability conjecture for AdS black holes obtained from the higher dimensional Ricci cubic gravity. It shows that the Ricci tensor perturbations exhibit unstable modes for small AdS black holes when solving Lichnerowicz equation, leading to Gregory–Laflamme instability. On the other hand, we find that a small black hole is thermodynamically unstable by showing the negative heat capacity. This suggests that the correlated stability conjecture holds for AdS black holes in Ricci cubic gravity. Furthermore, we find a newly non-AdS black hole by solving static Lichnerowicz equations, confirming the threshold mass for Gregory–Laflamme instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors confirm that this manuscript has no associated data in a data repository.

References

  1. Regge, T., Wheeler, J.A.: Phys. Rev. 108, 1063–1069 (1957). https://doi.org/10.1103/PhysRev.108.1063

    Article  ADS  MathSciNet  Google Scholar 

  2. Zerilli, F.J.: Phys. Rev. Lett. 24, 737–738 (1970). https://doi.org/10.1103/PhysRevLett.24.737

    Article  ADS  Google Scholar 

  3. Vishveshwara, C.V.: Phys. Rev. D 1, 2870–2879 (1970). https://doi.org/10.1103/PhysRevD.1.2870

    Article  ADS  Google Scholar 

  4. Teukolsky, S.A.: Phys. Rev. Lett. 29, 1114–1118 (1972). https://doi.org/10.1103/PhysRevLett.29.1114

    Article  ADS  Google Scholar 

  5. Whiting, B.F.: J. Math. Phys. 30, 1301 (1989). https://doi.org/10.1063/1.528308

    Article  ADS  MathSciNet  Google Scholar 

  6. Monteiro, R., Perry, M.J., Santos, J.E.: Phys. Rev. D 80, 024041 (2009). https://doi.org/10.1103/PhysRevD.80.024041. [arXiv:0903.3256 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  7. Cardoso, V., Lemos, J.P.S.: Phys. Rev. D 64, 084017 (2001). https://doi.org/10.1103/PhysRevD.64.084017. [arXiv:gr-qc/0105103 [gr-qc]]

    Article  ADS  Google Scholar 

  8. Ishibashi, A., Kodama, H.: Prog. Theor. Phys. 110(4), 701–22 (2003)

    Article  ADS  Google Scholar 

  9. Whitt, B.: Phys. Rev. D 32, 379 (1985). https://doi.org/10.1103/PhysRevD.32.379

    Article  ADS  MathSciNet  Google Scholar 

  10. Mauro, S., Balbinot, R., Fabbri, A., Shapiro, I.L.: Eur. Phys. J. Plus. 130, 1–8 (2015)

    Article  Google Scholar 

  11. Stelle, K.S.: Int. J. Mod. Phys. A 32(09), 1741012 (2017). https://doi.org/10.1142/S0217751X17410123

    Article  ADS  Google Scholar 

  12. Myung, Y.S.: Phys. Rev. D 88(2), 024039 (2013). https://doi.org/10.1103/PhysRevD.88.024039

    Article  ADS  Google Scholar 

  13. Gregory, R., Laflamme, R.: Phys. Rev. Lett. 70, 2837–2840 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  14. Gubser, S.S., Mitra, I.: Clay Math. Proc. 1, 221 (2002). [arXiv:hep-th/0009126 [hep-th]]

    Google Scholar 

  15. Gubser, S.S., Mitra, I.: JHEP 08, 018 (2001). https://doi.org/10.1088/1126-6708/2001/08/018. [arXiv:hep-th/0011127 [hep-th]]

    Article  ADS  Google Scholar 

  16. Harmark, T., Niarchos, V., Obers, N.A.: Class. Quant. Grav. 24, R1–R90 (2007)

    Article  ADS  Google Scholar 

  17. Myung, Y.S., Moon, T.: JHEP 04, 058 (2014). https://doi.org/10.1007/JHEP04(2014)058. [arXiv:1311.6985 [hep-th]]

    Article  ADS  Google Scholar 

  18. Myung, Y.S.: Eur. Phys. J. C 78(5), 362 (2018). https://doi.org/10.1140/epjc/s10052-018-5864-3

    Article  ADS  Google Scholar 

  19. Lü, H., Perkins, A., Pope, C.N., Stelle, K.S.: Phys. Rev. D 96(4), 046006 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. Bueno, P., Cano, P.A.: Phys. Rev. D 94(10), 104005 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  21. Hennigar, R.A., Kubizňák, D., Mann, R.B.: Phys. Rev. D 95(10), 104042 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  22. Ahmed, J., Hennigar, R.A., Mann, R.B., Mir, M.: JHEP 05, 134 (2017). https://doi.org/10.1007/JHEP05(2017)134. [arXiv:1703.11007 [hep-th]]

    Article  ADS  Google Scholar 

  23. Bueno, P., Cano, P.A.: Phys. Rev. D 94(12), 124051 (2016). https://doi.org/10.1103/PhysRevD.94.124051

    Article  ADS  MathSciNet  Google Scholar 

  24. Li, Y.Z., Liu, H.S., Lu, H.: JHEP 02, 166 (2018). https://doi.org/10.1007/JHEP02(2018)166. [arXiv:1708.07198 [hep-th]]

    Article  ADS  Google Scholar 

  25. Li, Y.Z., Lu, H., Wu, J.B.: Phys. Rev. D 97(2), 024023 (2018). https://doi.org/10.1103/PhysRevD.97.024023

    Article  ADS  MathSciNet  Google Scholar 

  26. Liu, H., Lu, H., Luo, M.: Int. J. Mod. Phys. D 21, 1250020 (2012). https://doi.org/10.1142/S0218271812500204. [arXiv:1104.2623 [hep-th]]

    Article  ADS  Google Scholar 

  27. Moon, T., Myung, Y.S., Son, E.J.: Eur. Phys. J. C 71, 1777 (2011). https://doi.org/10.1140/epjc/s10052-011-1777-0. [arXiv:1104.1908 [gr-qc]]

    Article  ADS  Google Scholar 

  28. Gregory, R., Laflamme, R.: Nucl. Phys. B 428, 399–434 (1994). https://doi.org/10.1016/0550-3213(94)90206-2

    Article  ADS  Google Scholar 

  29. Kol, B., Sorkin, E.: Class. Quant. Grav. 21, 4793–4804 (2004). https://doi.org/10.1088/0264-9381/21/21/003

    Article  ADS  Google Scholar 

  30. Kol, B., Sorkin, E.: Class. Quant. Grav. 23, 4563–4592 (2006). https://doi.org/10.1088/0264-9381/23/14/002

    Article  ADS  Google Scholar 

  31. Held, A., Zhang, J.: Phys. Rev. D. 107(6), 064060 (2023)

    Article  ADS  Google Scholar 

  32. Ghodsi, A., Najafi, F.: Eur. Phys. J. C 77(8), 559 (2017). https://doi.org/10.1140/epjc/s10052-017-5130-0

    Article  ADS  Google Scholar 

  33. Wald, R.M.: Phys. Rev. D 48(8), R3427–R3431 (1993). https://doi.org/10.1103/PhysRevD.48.R3427

    Article  ADS  Google Scholar 

  34. Iyer, V., Wald, R.M.: Phys. Rev. D 50, 846–864 (1994). https://doi.org/10.1103/PhysRevD.50.846

    Article  ADS  MathSciNet  Google Scholar 

  35. Jacobson, T., Kang, G., Myers, R.C.: Phys. Rev. D 49, 6587–6598 (1994). https://doi.org/10.1103/PhysRevD.49.6587

    Article  ADS  MathSciNet  Google Scholar 

  36. Lin, K., Qian, W.L., Pavan, A.B., Abdalla, E.: EPL 114(6), 60006 (2016). https://doi.org/10.1209/0295-5075/114/60006

    Article  ADS  Google Scholar 

  37. Doneva, D.D., Yazadjiev, S.S.: Phys. Rev. Lett. 120(13), 131103 (2018). https://doi.org/10.1103/PhysRevLett.120.131103

    Article  ADS  Google Scholar 

  38. Silva, H.O., Sakstein, J., Gualtieri, L., Sotiriou, T.P., Berti, E.: Phys. Rev. Lett. 120(13), 131104 (2018). https://doi.org/10.1103/PhysRevLett.120.131104

    Article  ADS  Google Scholar 

  39. Antoniou, G., Bakopoulos, A., Kanti, P.: Phys. Rev. Lett. 120(13), 131102 (2018). https://doi.org/10.1103/PhysRevLett.120.131102

    Article  ADS  Google Scholar 

  40. Herdeiro, C.A.R., Radu, E., Sanchis-Gual, N., Font, J.A.: Phys. Rev. Lett. 121(10), 101102 (2018). https://doi.org/10.1103/PhysRevLett.121.101102

    Article  ADS  Google Scholar 

  41. Zou, D.C., Myung, Y.S.: Phys. Rev. D 102(6), 064011 (2020). https://doi.org/10.1103/PhysRevD.102.064011

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

YSM wrote the main manuscript text prepared Figs. 1 and 3. DCZ computed sect. 5 and 7 and prepared Figs. 2 and 4.

Corresponding author

Correspondence to Yun Soo Myung.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myung, Y.S., Zou, DC. Correlated stability conjecture for AdS black holes in higher dimensional Ricci cubic gravity. Gen Relativ Gravit 55, 81 (2023). https://doi.org/10.1007/s10714-023-03129-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03129-0

Keywords

Navigation