Skip to main content
Log in

Radiant gravitational collapse with anisotropy in pressures and bulk viscosity

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We model a compact radiant star that undergoes gravitational collapse from a certain initial static configuration until it becomes a black hole. The star consists of a fluid with anisotropy in pressures, bulk viscosity, in addition to the radial heat flow. A solution of Einstein’s field equations with temporal dependence was presented to study the dynamic evolution of physical quantities, such as the mass-energy function, the luminosity seen by an observer at infinity and the heat flow. We checked the acceptability conditions of the initial static configuration to obtain a range of mass-to-radius ratio in which the presented star model is physically reasonable. The energy conditions were analyzed for the dynamic case, in order to guarantee that the model is composed of a physically acceptable fluid within the range of the mass-to-radius ratio obtained for the static configuration or if they will be modified during the collapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability Statement

The authors declare that the data supporting the findings of this study are available within the article and its supplementary information files.

References

  1. Chandrasekhar, A.: Phil. Mag. 11, 592–596 (1931)

    Article  Google Scholar 

  2. Chandrasekhar, A.: Astron. J. 74, 81–82 (1931)

    Article  Google Scholar 

  3. Lattimer, J.M.: Annual Review of Nuclear and Particle Science. 62, 485 (2012)

    Article  ADS  Google Scholar 

  4. Oppenheimer, J. R., Volkoff, G. M.:Phys. Rev., 55 (1939), 374

  5. Cameron, A.G.W.: Astron. J. 130, 884 (1959)

    Article  Google Scholar 

  6. Oppenheimer , J. R., Snydder, H.: Phys. Rev., 56 (1939), 455

  7. Penrose, R.: Riv. Nuovo Cim. 1, 252 (1967)

    ADS  Google Scholar 

  8. Penrose, R.: in Black holes and relativistic stars, ed. R. M. Wald, University of Chicago Press (1998)

  9. Krolak, A.: Prog. Theor. Phys. Suppl. 136, 45 (1999). [arXiv:gr-qc/9910108 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  10. Joshi, P. S.: Pramana 55, (2000) 529 [arXiv:gr-qc/0006101 [gr-qc]]

  11. Celerier, M.N., Szekeres, P.: Phys. Rev. D 65, 123516 (2002). [arXiv:gr-qc/0203094 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  12. Harada, T., Iguchi, H., Nakao, K. i.: Prog. Theor. Phys. 107, (2002) 449 [arXiv:gr-qc/0204008 [gr-qc]]

  13. Brandt, C.F.C., Lin, L.M., Villas da Rocha, J.F., Wang, A.Z.: Int. J. Mod. Phys. D 11, 155 (2002). [arXiv:gr-qc/0105019 [gr-qc]]

    Article  ADS  Google Scholar 

  14. Joshi, P.S., Dadhich, N., Maartens, R.: Phys. Rev. D 65, 101501 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  15. Giambo, R., Giannoni, F., Magli, G., Piccione, P.: Commun. Math. Phys. 235, 545 (2003). [arXiv:gr-qc/0204030 [gr-qc]]

    ADS  Google Scholar 

  16. Chan, R., da Silva, M.F.A., Villas da Rocha, J.F.: Int. J. Mod. Phys. D 12, 347–368 (2003)

    Article  ADS  Google Scholar 

  17. Brandt, C.F.C., Chan, R., da Silva, M.F.A., Villas da Rocha, J.F.: Int. J. Mod. Phys. D 19, 317 (2010)

    Article  ADS  Google Scholar 

  18. Joshi, Pankaj S., Malafarina, Daniele: Int. J. Mod. Phys. D 20, 2641 (2011)

    Article  ADS  Google Scholar 

  19. Malafarina, D., Joshi, P.S.: Int. J. of Mod. Phys. D 20, 463–495 (2011)

    Article  ADS  Google Scholar 

  20. Sharma, R., Das, S.: Journal of Gravity, vol. 2013, (2013) Article ID 659605

  21. Sheng-Xian Zhao, Shuang-Nan Zhang, Chinese Physics C, Vol. 42, Issue 8, article id. (2018) 5101

  22. Hillebrondt, W., Steinnetz, K.O.: Astro. Astrophys. 53, 283 (1976)

    ADS  Google Scholar 

  23. Herrera, L., Ruggeri, G.J., Witten, L.: Astrophys. J. 234, 1094 (1979)

    Article  ADS  Google Scholar 

  24. Cosenza, M., Herrera, L., Esculpi, M., Witten, L.: J. Math. Phys. 22, 118 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  25. Chan, R., Herrera, L., Santos, N.O.: Mon. Not. R. Astron. Soc. 265, 533 (1993)

    Article  ADS  Google Scholar 

  26. Herrera, L., Santos, N.O.: Phys. Rep. 286, 53 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  27. Dev, K., Gleiser, M.: Gen. Relativ. Gravit. 35, 1435 (2003)

    Article  ADS  Google Scholar 

  28. Estevez-Delgado, G., Estevez-Delgado, J.: Eur. Phys. J. C 78, 673 (2018)

    Article  ADS  Google Scholar 

  29. Raychaudhuri, A.: Z. Astrophys. 43, 161 (1957)

    ADS  Google Scholar 

  30. Mohanlal, R., Maharaj, S.D., Tiwari, A.K., et al.: Gen Relativ Gravit 48, 87 (2016)

    Article  ADS  Google Scholar 

  31. Mahomed, A.B., Maharaj, S.D., Narain, R.: AIP Advances 10, 035208 (2020)

    Article  ADS  Google Scholar 

  32. Maharaj, S. D., Brassel, B. P.: The Eur. Phys. J. C volume 81, (2021) Article number: 783

  33. Paliathanasis, A., Bogadi, R.S., Govender, M.: Eur. Phys. J. C 82, 987 (2022)

    Article  ADS  Google Scholar 

  34. Leon, G., Govender, M., Paliathanasis, A.: Math. Meth. Appl. Sci. 45, 7728 (2022)

    Article  Google Scholar 

  35. Reddy, P., Govender, M., Govender, W., Maharaj, S.D.: Annals of Physics 429, 16845 (2021)

    Article  Google Scholar 

  36. Abbott, B.P., et al.: Astron. J. 12, 848 (2017)

    Google Scholar 

  37. Abbott, B.P.: et al., Phys. Rev. Lett., 119 (2017)

  38. Abbott, B.P., et al.: ApJL. 896, 1–20 (2020)

    Article  Google Scholar 

  39. Hernández, H., Núñez, L.A., Percoco, U.: Class. Quant. Grav. 16, 871–896 (1998)

    Article  ADS  Google Scholar 

  40. Hernández, H., Núñez, L.A.: Can. J. Phys. 82, 29–51 (2002)

    Article  ADS  Google Scholar 

  41. Vaidya, P.C.: Nature. 171, 260–261 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  42. Israel, W.: Nouvo Cim. B. 44, 1–14 (1966)

    Article  ADS  Google Scholar 

  43. Eisenhart, L. P.: Princeton University Press., (1949), 272

  44. Nogueira, P.C., Chan, R.: Int. J. Mod. Phys. D. 13, 1727 (2004)

    Article  ADS  Google Scholar 

  45. Cahill, M.E., McVittie, G.C.: J. Math. Phys. 11, 1382 (1970)

    Article  ADS  Google Scholar 

  46. Lindquist, R.W., Schwartz, R.A., Misner, C.W.: Phys. Rev. 137, 1–14 (1965)

    Article  Google Scholar 

  47. Wyman, M.: Phys. Rev. 75, 1930 (1949)

    Article  ADS  MathSciNet  Google Scholar 

  48. Tolman, R.C.: Phys. Rev. 55, 364–373 (1939)

    Article  ADS  Google Scholar 

  49. Pretel, J.M.Z., da Silva, M.F.A.: Gen. Rel. and Grav. 51, 1–40 (2018)

    Google Scholar 

  50. Herrera, L., Denmat, G.L., Santos, N.O.: Gen Relativ Gravit 44, 1143 (2012)

    Article  ADS  Google Scholar 

  51. Abebe, G.Z., Maharaj, S.D.: Pramana - J Phys 88, 19 (2017)

    Article  ADS  Google Scholar 

  52. Hawking, S. W.; Ellis, G. F. R. (1973). The Large Scale Structure of Space-Time. Cambridge University Press. ISBN 0-521-09906-4

  53. R. Chan, M. F. A. da Silva and Jaime F. Villas da Rocha, Mod. Phys. Lett. A 24, (2009) 1137

  54. E. Böhm-Vitense, Cambridge University Press., (1989)

  55. L. Rezzolla and O. Zanotti, Oxford University Press., (2013)

  56. S. Chandrasekhar, An Introduction to the Study of Stellar Structure University of Chicago Press.,(1938)

  57. Casali, R.H., Menezes, D.P., Braz, J.: J. Phys. 40, 166–171 (2010)

    Google Scholar 

  58. Moustakidis, C.C.: Gen. Relat. and Grav. 49, 1–17 (2017)

    Article  MathSciNet  Google Scholar 

  59. Esculpi, M., Alomá, E.: Eur. Phys. J. C. 67, 521–532 (2010)

    Article  ADS  Google Scholar 

  60. Pretel, J.M.Z., da Silva, M.F.A.: Month. Not. Roy. Astron. Soc. 495, 1–12 (2020)

    Article  Google Scholar 

  61. Kolassis, C.A., Santos, N.O., Tsoubelis, D.: Class. Quant. Grav. 5, 1329–1338 (1988)

    Article  ADS  Google Scholar 

  62. Veneroni, L.S.M., da Silva, M.F.A.: Int. J. Mod. Phys. D. 28, 1–26 (2018)

    Google Scholar 

  63. Abbott, R., et al.: ApJL 915, L5 (2021)

    Article  ADS  Google Scholar 

  64. R. Abbott et al, (2022) arXiv:2111.03634 [astro-ph.HE]

Download references

Acknowledgements

The financial assistance from Conselho Nacional de Desenvolvimento Científico (CNPq), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Maria de Fátima Alves da Silva: as Arthur C. Mesquita’s master’s advisor, I proposed the research topic, suggested paths and participated in discussions and analyses. Arthur Câmara Mesquita: he developed all the calculations, built the graphs and participated in the discussions and analyses.

Corresponding author

Correspondence to A. C. Mesquita.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Junction condition

Appendix: Junction condition

The requirement of the matching between the inner (matter distribution) and outer (radiation zone around the distribution) solution across the \(\Sigma \) hipersurface is called as the junction condition problem. This condition imposes continuity of the first and second fundamental forms, the first being the metric and the second the extrinsic curvature, such as the conditions established by Israel [42]. So, when we approach \(\Sigma \) through interior or exterior spacetime we must demand that

$$\begin{aligned} (ds^2_-)_\Sigma =(ds^2_+)_\Sigma =ds^2_\Sigma \end{aligned}$$
(87)

where \(()_\Sigma \) means the value of () over \(\Sigma \). Thus, the equations when taken on the hypersurface \(\Sigma \) obtained from the inner and outer spacetimes are \(\chi _\pm ^\alpha =\chi _\pm ^\alpha (\xi ^i)\). The extrinsic curvature of \(\Sigma \) is given by [43]

$$\begin{aligned} K_{ij}^\pm \equiv -\eta ^\pm _\alpha \frac{\partial ^2\chi _\pm ^\alpha }{\partial \xi ^i\partial \xi ^j}-\eta _\alpha ^\pm \Gamma _{\beta \gamma }^\alpha \frac{\partial \chi _\pm ^\beta }{\partial \xi ^i}\frac{\partial \chi _\pm ^\gamma }{\partial \xi ^j} \ , \end{aligned}$$
(88)

where \(\eta ^\pm _\alpha \) are the components of the vector normal to \(\Sigma \) at coordinates \(\chi ^\alpha _\pm \). Consequently, the second continuity condition imposed on \(\Sigma \) takes the form

$$\begin{aligned} (K_{ij}^+)_\Sigma =(K_{ij}^-)_\Sigma \ . \end{aligned}$$
(89)

Following Nogueira and Chan [44], and considereing the metric given by (2), the continuity of the first fundamental form provides

$$\begin{aligned}{} & {} \left( \frac{dt}{d\tau }\right) _\Sigma =\frac{1}{A(r_\Sigma ,t)} \ , \end{aligned}$$
(90)
$$\begin{aligned}{} & {} \left( \frac{dv}{d\tau }\right) _\Sigma ^{-2}=1-2\frac{d{\textbf {r}}_\Sigma }{dv}-\frac{2m(v)}{{\textbf {r}}_\Sigma } \ , \end{aligned}$$
(91)
$$\begin{aligned} C(r_\Sigma ,t)={\textbf {r}}_\Sigma (v) = R(\tau ) \ . \end{aligned}$$
(92)

On the other hand, the continuity of the second fundamental form leads us to obtain the mass-energy function in the form

$$\begin{aligned} m= \left\{ \frac{C}{2}\left[ 1+\left( \frac{\dot{C}}{A}\right) ^2-\left( \frac{C'}{B}\right) ^2\right] \right\} _\Sigma \ \end{aligned}$$
(93)

which represents the total energy stored inside the hypersurface. This expression is equivalent to the one given by Cahill & McVittie [45].

In addition, we can take the gravitational redshift in the form

$$\begin{aligned} \left( \frac{dv}{d\tau }\right) ^{-1}_\Sigma = \frac{1}{1+z_\Sigma } = \left( \frac{C'}{B}+\frac{\dot{C}}{A}\right) _\Sigma \ , \end{aligned}$$
(94)

and we can see that this expression diverges when we do

$$\begin{aligned} \left( \frac{C'}{B}+\frac{\dot{C}}{A}\right) _\Sigma = 0\ \end{aligned}$$
(95)

The continuity of the extrinsic curvature also leads us to write the identity

$$\begin{aligned} \left( \frac{C}{2B^2}G_{11}^-\right) _\Sigma = \left( -\frac{C}{2AB}G_{01}^-\right) _\Sigma \ . \end{aligned}$$
(96)

Applying the equations (10) and (12) to the equality above we find [44]

$$\begin{aligned} (P_r+4\eta \sigma -\zeta \Theta )_\Sigma = (qB)_\Sigma \ , \end{aligned}$$
(97)

which represents a generalization of the junction condition \((P_r)_\Sigma =0\) in the presence of heat dissipation and viscosities.

Finally, the total luminosity of the star received by an observer at rest at infinity, denoted by \(L_\infty \), is given by [46]

$$\begin{aligned} L_\infty =-\left( \frac{dm}{dv}\right) _\Sigma =-\left[ \frac{dm}{dt}\frac{dt}{d\tau }\left( \frac{dv}{d\tau }\right) ^{-1}\right] _\Sigma \ . \end{aligned}$$
(98)

So, replacing (90), (93), (94) and (97) in (98) we can write

$$\begin{aligned} L_\infty =\frac{k}{2}\left[ C^2\ (P_r+4\eta \sigma -\zeta \Theta )\left( \frac{\dot{C}}{A}+\frac{C'}{B}\right) ^2\right] _\Sigma \ . \end{aligned}$$
(99)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesquita, A.C., da Silva, M.F.A. Radiant gravitational collapse with anisotropy in pressures and bulk viscosity. Gen Relativ Gravit 55, 58 (2023). https://doi.org/10.1007/s10714-023-03098-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03098-4

Keywords

Navigation