Skip to main content
Log in

On black hole thermodynamics, singularity, and gravitational entropy

  • Review Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Black holes were found to possess properties that mirror ordinary thermodynamical systems in the landmark paper by Bardeen, Carter and Hawking almost half a century ago. Since then much progress has been made, but many fundamental issues remain. For example, what are the underlying degrees of freedom of a black hole horizon that give rise to said thermodynamical properties? Furthermore, classical black holes also harbor a spacetime singularity. Although it is often believed that quantum gravity would “cure” the singularity, as emphasized by Penrose, this viewpoint requires a deeper examination. In this review, I will examine the possibility that singularities remain in quantum gravity, the roles they may play, and the possible links between singularity and black hole thermodynamics. I will also discuss how—inspired by Penrose’s Weyl curvature hypothesis—gravitational entropy for a black hole can be defined using curvature invariants, and the surprising implication that the entropy of black holes in different theories of gravity are different manifestations of spacetime curvature, i.e., their underlying microstructures could be different. Finally, I review the “Hookean law” recently established for singly rotating Myers-Perry black holes (including 4-dimensional Kerr black holes) that connect black hole fragmentation—a consequence of the second law of black hole thermodynamics—with the maximum “Hookean force”, as well as with the thermodynamic geometry of Ruppeiner. This also suggests a new way to study black hole microstructures, and hints at the possibility that some black holes are beyond the Hookean regime (and thus have different microstructures). While examining the remarkable connections between black hole thermodynamics, spacetime singularities and cosmic censorship, as well as gravitational entropy, I shall point out some subtleties, provide some new thoughts, and raise some hard but fundamental questions, including whether black hole thermodynamics is really just “ordinary thermodynamics” or something quite different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. In gauge/gravity duality, the physics of a system in the presence of gravity inside an asymptotically anti-de Sitter spacetime (“the bulk”) is equivalent to the physics of another non-gravitational field theory with one less spatial dimension at the conformal boundary. However, in most interesting applications, the field theory is not completely conformal. For example, when the field theory has a temperature dual to the Hawking radiation in the bulk, the temperature gives a length scale to the boundary. Hence the term “gauge/gravity duality” is more accurate than “Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence”. I have not much to say about this important aspect of theoretical physics, though there will be occasional related remarks.

  2. An alternative view that some sort of remnant persists is not entirely ruled out [22], though they are widely argued to be problematic. Indeed, the recently popular weak gravity conjecture [23, 24] was partly formulated to prevent such a state from ever arising.

  3. Here we recall Penrose’s statement to the contrary [25]: “It is hard to avoid the conclusion that the endpoint of the Hawking evaporation of a black hole would be a naked singularity - or at least something that one [sic] a classical scale would closely resemble a naked singularity.” In fact, Russo has argued that a complete evaporation would lead to a catastrophic event at the end of the evaporation [26]—an outbrust of Planckian curvature wave similar to a “thunderbolt” singularity [25, 27, 28].

  4. In fact, cosmic censorship is not a strictly classical phenomenon, for under some situations one needs quantum effects to maintain the censorship [29, 30] that would have otherwise failed. See also [31].

  5. We can further compare this with the ultraviolet catastrophe (Rayleigh-Jeans catastrophe) in classical thermodynamics. In that case, a divergence was predicted by the classical theory, which of course did not match observations. Once quantum mechanics is taken into account, the infinity is “cured” and one obtains the Planck spectrum. Thus quantum mechanics is required to explain the observed spectrum. In our context, however, the classical theory of GR already predicts the correct observation: namely there is a censorship bound, without which one runs into the problem with naked singularity. If QG cures away the singularity, it also removes the need for cosmic censorship. So quantum modifications in this case, seemingly introduced a new question instead of solving an existing one.

  6. Interestingly, and somewhat surprisingly, there may be nontrivial connections between Lorentz symmetry and the second law of thermodynamics [47,48,49], and local Lorentz symmetry may be an emergent property of the macroscopic world with origins in a microscopic second law of causal horizon thermodynamics [50].

  7. Note that the Schwinger effect is necessarily suppressed for all values of black hole parameters [58], but it is crucial that the term be included, otherwise all Reissner-Nordström black holes will tend to extremality, and potentially violates cosmic censorship [59].

  8. It is worth emphasizing again at this point that singularities are problematic only when they cause the theory to lose predictability. If the instability of the inner horizon turns into a spacelike singularity, there is actually no problem with predictability, and as such, is a good thing. Many physicists, however, are uncomfortable with singularities, even if they are spacelike.

  9. The estimate made by Penrose is essentially based on the number of microstates corresponding to the maximum possible entropy, which is given by the Bekenstein–Hawking entropy of a black hole with the total mass of the observable universe. Surprisingly, this number is also close to the one obtained by assuming we are living inside a de Sitter spacetime (now that we know that the universe undergoes an accelerated expansion), in which the de Sitter horizon entropy is \(S\sim 1/\Lambda \sim 10^{122}\) in the Planck units. The current actual entropy inside the observable universe is about \(10^{104}\), which also includes contributions from supermassive black holes [91]. This is an example of the “holographic principle” in action, that the entropy of the cosmic horizon bounds the interior entropy.

  10. A strengthened version of the theorem can be proved even when the NEC is somewhat violated [95]. At present it is not clear whether the relaxed energy conditions that guarantee the validity of a semi-classical version of the area theorem would also be the same conditions that forbid Hawking radiation and vice versa.

  11. A lower bound on the entropy of a black hole can be deduced from a bound on the minimal (Tolman) redshift factor of gravitational waves emerging from the vicinity of its horizon [97].

  12. The Clifton-Ellis-Tavakol gravitational entropy was also shown to be increasing during structure formation in Szekeres Class I models [100]. Interestingly, in the presence of shear, the Clifton-Ellis-Tavakol gravitational entropy can increase even though the Weyl curvature decreases. Thus, the Weyl curvature hypothesis is not strictly valid in all cosmological spacetimes [101].

  13. It is debatable whether this is really a problem. For example, when singularity does form when a black string or black ring undergoes “pinch-off” under Gregory-Laflamme instability [104], the loss of classical predictability of the system is argued to be quite small. This is also the case for the naked singularity formation under black hole collision in higher dimensions. To quote [105], “even if cosmic censorship is violated, its spirit remains unchallenged.” Is a little violation acceptable?

  14. Here \(\Omega _{d-2}\) is the area of the unit \((d-2)\)-dimensional sphere, not to be confused with the angular velocity of the horizon, which I will denote \(\Omega _+\).

References

  1. Hawking, S.W.: Black hole explosions? Nature 248, 30 (1974)

    Article  ADS  MATH  Google Scholar 

  2. Bardeen, J.M., Carter, B., Hawking, S.W.: The four laws of black hole mechanics. Commun. Math. Phys. 31, 161 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Alexander, S.H., Yagi, K., Yunes, N.: An entropy-area law for Neutron stars near the black hole threshold. Class. Quant. Grav. 36, 015010 (2019). arXiv:1810.01313 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  5. Lin, S.-Y.: Seeing through a nearly black star. Phys. Rev. D 102, 025005 (2020). arXiv:1910.13198 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  6. Hawking, S.W.: Gravitational radiation from colliding black holes. Phys. Rev. Lett. 26, 1344 (1971)

    Article  ADS  Google Scholar 

  7. Bekenstein, J.D.: Generalized second law of thermodynamics in black-hole physics. Phys. Rev. D 9, 3292 (1974)

    Article  ADS  Google Scholar 

  8. Wallace, D.: The case for black hole thermodynamics, part i: phenomenological thermodynamics. Stud. Hist. Phil. Sci. B 64, 52 (2018). arXiv:1710.02724 [gr-qc]

    MathSciNet  MATH  Google Scholar 

  9. Wallace, D.: The case for black hole thermodynamics, part ii: statistical mechanics. Stud. Hist. Phil. Sci. B 66, 103 (2019). arXiv:1710.02725 [gr-qc]

    MathSciNet  MATH  Google Scholar 

  10. Prunkl, C.E.A., Timpson, C.G.: Black Hole Entropy Is Thermodynamic Entropy, arXiv:1903.06276 [physics.hist-ph]

  11. Bousso, R.: The holographic principle. Rev. Mod. Phys. 74, 825 (2002). arXiv:hep-th/0203101

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Hubeny, V.E.: The AdS/CFT correspondence. Class. Quant. Grav. 32(12), 124010 (2015). arXiv:1501.00007 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Penrose, R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Penrose, R.: Gravitational collapse: the role of general relativity’. Riv. Nuovo Cim. 1, 252 (1969)

    ADS  Google Scholar 

  15. Penrose, R.: Gravitational collapse: the role of general relativity. Gen. Relativ. Gravit. 34, 1141 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Donoghue, J.F.: Introduction to the effective field theory description of gravity, arXiv:gr-qc/9512024

  17. Burgess, C.P.: Quantum gravity in everyday life: general relativity as an effective field theory. Living Rev. Rel. 7, 5 (2004). arXiv:gr-qc/0311082

    Article  MATH  Google Scholar 

  18. Weatherall, J.O.: Where Does General Relativity Break Down?”, arXiv:2204.03869 [physics.hist-ph]

  19. Saini, S., Singh, P.: Geodesic completeness and the lack of strong singularities in effective loop quantum Kantowski–Sachs spacetime. Class. Quantum Grav. 33, 245019 (2016). arXiv:1606.04932 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Hawking, S.W., Perry, M.J., Strominger, A.: Soft Hair on Black Holes. Phys. Rev. Lett. 116(23), 231301 (2016). arXiv:1601.00921 [hep-th]

    Article  ADS  Google Scholar 

  21. Strominger, A.: Black Hole Information Revisited, arXiv:1706.07143 [hep-th]

  22. Chen, P., Ong, Y.C., Yeom, D.: Black hole remnants and the information loss paradox. Phys. Rept. 603, 1 (2015). arXiv:1412.8366 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  23. Arkani-Hamed, N., Motl, L., Nicolis, A., Vafa, C.: The string landscape, black holes and gravity as the weakest force. JHEP 06, 060 (2007). arXiv:hep-th/0601001

    Article  ADS  MathSciNet  Google Scholar 

  24. Harlow D, Heidenreich B, Reece M, Rudelius T.: The Weak Gravity Conjecture: A Review, arXiv:2201.08380 [hep-th]

  25. Penrose, R.: The question of cosmic censorship. J. Astrophys. Astron. 20, 233 (1999)

    Article  ADS  Google Scholar 

  26. Russo, J.G.: On black hole singularities in quantum gravity. Phys. Lett. B 10, 35 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  27. Hawking, S.W., Stewart, J.M.: Naked and thunderbolt singularities in black hole evaporation. Nucl. Phys. B 400, 393 (1993). arXiv:hep-th/9207105

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Hawking, S.W.: Evaporation of Two Dimensional Black Holes. In: Ellis, G., Lanza, A., Miller, J. (eds.) The Renaissance of General Relativity and Cosmology: A Survey to Celebrate the 65th Birthday of Dennis Sciama, pp. 274–286. Cambridge University Press, Cambridge (1993)

    Chapter  Google Scholar 

  29. Hod, S., Piran, T.: Cosmic censorship: the role of quantum gravity. Gen. Relativ. Gravit. 32, 2333 (2000). arXiv:gr-qc/0011003

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Hod, S.: Return of the quantum cosmic censor. Phys. Lett. B 668, 346 (2008). arXiv:0810.0079 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  31. Casals, M., Fabbri, A., Martínez, C., Zanelli, J.: Quantum backreaction on three-dimensional black holes and naked singularities. Phys. Rev. Lett. 118, 131102 (2017). arXiv:1608.05366 [gr-qc]

    Article  ADS  Google Scholar 

  32. Gregoris, D., Ong, Y.C.: Understanding gravitational entropy of black holes: a new proposal via curvature invariants. Phys. Rev. D 105, 104017 (2022). arXiv:2109.11968 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  33. Di Gennaro, S., Good, M.R., Ong, Y.C.: The Hookean Law of black holes and fragmentation: insights from maximum force conjecture and ruppeiner geometry. Phys. Rev. Res. 4, 023031 (2022). arXiv:2108.13435 [gr-qc]

    Article  Google Scholar 

  34. Gibbons, G.W.: The maximum tension principle in general relativity. Found. Phys. 32, 1891 (2002). arXiv:hep-th/0210109

    Article  ADS  MathSciNet  Google Scholar 

  35. Barrow, J.D., Gibbons, G.W.: Maximum tension: with and without a cosmological constant. Mon. Not. Roy. Astron. Soc. 446, 3874 (2014). arXiv:1408.1820 [gr-qc]

    Article  ADS  Google Scholar 

  36. Schiller, C.: General relativity and cosmology derived from principle of maximum power or force. Int. J. Theor. Phys. 44, 1629 (2005). [arXiv:physics/0607090 [physics.gen-ph]]

    Article  MATH  Google Scholar 

  37. Schiller, C.: Simple derivation of minimum length, minimum dipole moment and lack of space-time continuity. Int. J. Theor. Phys. 45, 221 (2006)

    Article  MATH  Google Scholar 

  38. Ong, Y.C.: Spacetime singularities and cosmic censorship conjecture: a review with some thoughts. Int. J. Mod. Phys. A 35(14), 14 (2020). arXiv:2005.07032 [gr-qc]

    Article  Google Scholar 

  39. Crowther, K., De Haro, S.: Four Attitudes Towards Singularities in the Search for a Theory of Quantum Gravity, arXiv:2112.08531 [gr-qc]

  40. Reynolds, C.S.: Observing black holes spin. Nature Astron. 3(1), 41 (2019). arXiv:1903.11704 [astro-ph.HE]

    Article  ADS  MathSciNet  Google Scholar 

  41. Senovilla, J.M.M., Garfinkle, D.: The 1965 penrose singularity theorem. Class. Quantum Grav. 32, 124008 (2015). arXiv:1410.5226 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Fewster, C.J., Galloway, G.J.: Singularity theorems from weakened energy conditions. Class. Quantum Grav. 28, 125009 (2011). arXiv:1012.6038 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Fewster, C.J., Kontou, E.A.: A new derivation of singularity theorems with weakened energy hypotheses. Class. Quantum Grav. 37(6), 065010 (2020). arXiv:1907.13604 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Freivogel, B., Kontou, E.-A., Krommydas, D.: The return of the singularities: applications of the smeared null energy condition. SciPost Phys. 13, 001 (2022). arXiv:2012.11569 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  45. Fewster, C.J., Kontou, E.A.: A semiclassical singularity theorem. Class. Quantum Grav. 39(7), 075028 (2022). arXiv:2108.12668 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Minguzzi, E.: A gravitational collapse singularity theorem consistent with black hole evaporation. Lett. Math. Phys. 110, 2383 (2020). arXiv:1909.07348 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Dubovsky, S.L., Sibiryakov, S.M.: Spontaneous breaking of lorentz invariance, black holes and perpetuum mobile of the 2nd kind. Phys. Lett. B 638, 509 (2006). arXiv:hep-th/0603158

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Eling, C., Foster, B.Z., Jacobson, T., Wall, A.C.: Lorentz violation and perpetual motion. Phys. Rev. D 75, 101502 (2007). arXiv:hep-th/0702124

    Article  ADS  Google Scholar 

  49. Betschart, G., Kant, E., Klinkhamer, F.R.: Lorentz violation and black-hole thermodynamics. Nucl. Phys. B 815, 198 (2009). arXiv:0811.0943 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Jacobson, T., Wall, A.C.: Black hole thermodynamics and lorentz symmetry. Found. Phys. 40, 1076 (2010). arXiv:0804.2720 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Eddington, A.: New Pathways in Science. Cambridge University Press, Cambridge Messenger Lectures (1935)

    Google Scholar 

  52. Price, H.: Time’s arrow and Eddington’s challenge. Prog. Math. Phys. 63, 187 (2013)

    MathSciNet  Google Scholar 

  53. Wall, A.C.: The generalized second law implies a quantum singularity theorem, Class. Quant. Grav. 30 (2013) 165003, Class. Quant. Grav. 30 (2013) 199501 (erratum), arXiv:1010.5513 [gr-qc]

  54. Garfinkle, D., Horowitz, G.T., Strominger, A.: Charged Black Holes in String Theory, Phys. Rev. D 43 (1991) 3140 [Erratum ibid. D 45 (1992) 3888]

  55. Gibbons, G.: Antigravitating Black hole solitons with scalar hair in \({\cal{N}} = 4\) supergravity. Nucl. Phys. B 207, 337 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  56. Gibbons, G.W., Maeda, K.I.: Black holes and membranes in higher dimensional theories with dilaton fields. Nucl. Phys. B 298, 741 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  57. Hiscock, W.A., Weems, L.D.: Evolution of charged evaporating black holes. Phys. Rev. D 41, 1142 (1990)

    Article  ADS  Google Scholar 

  58. Gibbons, G.W.: Vacuum polarization and the spontaneous loss of charge by black holes. Comm. Math. Phys. 44, 245 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  59. Hod, S.: Hawking radiation may violate the penrose cosmic censorship conjecture. Int. J. Mod. Phys. D 28, 1944023 (2019). arXiv:2102.05519 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  60. Ong, Y.C., Yao, Y.: Charged particle production rate from cosmic censorship in dilaton black hole spacetimes. JHEP 10, 129 (2019). arXiv:1907.07490 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Shiraishi, K.: Superradiance from a charged dilaton black hole. Mod. Phys. Lett. A 7, 3449 (1992). [arXiv:1305.2564 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Di Gennaro, S., Ong, Y.C.: How not to extract information from black holes: cosmic censorship as a guiding principle. Phys. Lett. B 829, 137112 (2022). arXiv:2103.05516 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  63. Wu, C.H., Hu, Y.P., Xu, H.: Hawking evaporation of Einstein-Gauss-Bonnet ads black holes in \(d \geqslant \) dimensions’’. Eur. Phys. J. C 81(4), 351 (2021)

    Article  ADS  Google Scholar 

  64. Corelli, F., De Amicis, M., Ikeda, T., Pani, P.: “What Is the Fate of Hawking Evaporation in Gravity Theories With Higher Curvature Terms?”, arXiv:2205.13006 [gr-qc]

  65. Corelli, F., De Amicis, M., Ikeda, T., Pani, P.: Nonperturbative Gedanken Experiments in Einstein-Dilaton-Gauss-Bonnet Gravity: Nonlinear Transitions and Tests of the Cosmic Censorship Beyond General Relativity, arXiv:2205.13007 [gr-qc]

  66. Fernandes, P.G.S., Mulryne, D.J., Delgado, J.F.M.: Exploring the Small Mass Limit of Stationary Black Holes in Theories with Gauss-Bonnet Terms, arXiv:2207.10692 [gr-qc]

  67. Gary, T., Horowitz, R.M.: The value of singularities’. Gen. Relativ. Gravit. 27, 915 (1995). arXiv:gr-qc/9503062

    Article  ADS  MathSciNet  Google Scholar 

  68. Abbott, L.F., Deser, S.: Stability of gravity with a cosmological constant. Nucl. Phys. B 195, 76 (1982)

    Article  ADS  MATH  Google Scholar 

  69. Deser, S., Kanik, I., Tekin, B.: Conserved charges of higher D Kerr-AdS spacetimes. Class. Quantum Grav. 22, 3383 (2005). [arXiv:gr-qc/0506057]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. McInnes, B., Ong, Y.C.: A note on physical mass and the thermodynamics of AdS-Kerr black holes. JCAP 11, 004 (2015). arXiv:1506.01248 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  71. Ma, M.-S., Zhao, R.: Corrected form of the first law of thermodynamics for regular black holes. Class. Quantum Grav. 31, 245014 (2014). [arXiv:1411.0833 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. Chen, L., Yan-Gang, M.: Gliner Vacuum, self-consistent theory of ruppeiner geometry for regular black holes. arXiv:2103.14413 [gr-qc]

  73. Ramón, T.: Regular Rotating Black Holes: a review. arXiv:2208.12713 [gr-qc]

  74. Alfio, B., Amir-Pouyan, K., Frank, S.: Regular evaporating black holes with stable cores. arXiv:2209.10612 [gr-qc]

  75. Carballo-Rubio, R., Di Filippo, F., Liberati, S., Pacilio, C., Visser, M.: On the viability of regular black holes. JHEP 2018, 23 (2018). [arXiv:1805.02675 [gr-qc]]

    Article  MathSciNet  MATH  Google Scholar 

  76. Carballo-Rubio, R., Di Filippo, F., Liberati, S., Pacilio, C., Visser, M.: Inner horizon instability and the unstable cores of regular black holes. JHEP 05, 132 (2021). arXiv:2101.05006 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. Carballo-Rubio, R., Di Filippo, F., Liberati, S., Pacilio, C., Visser, M.: “Regular Black Holes Without Mass Inflation Instability”, arXiv:2205.13556 [gr-qc]

  78. Franzin, E., Liberati, S., Mazza, J., Vellucci, V.: Stable Rotating Regular Black Holes, arXiv:2207.08864 [gr-qc]

  79. Luk, J.: Weak null singularities in general relativity. J. Am. Math. Soc. 31, 1 (2018). [arXiv:1311.4970 [gr-qc]]

    Article  MathSciNet  MATH  Google Scholar 

  80. Dafermos, M.: Jonathan, Luk The Interior of Dynamical Vacuum Black Holes I: The \(C^0\)-Stability of the Kerr Cauchy Horizon, arXiv:1710.01722 [gr-qc]

  81. Van de Moortel, M.: Stability and instability of the sub-extremal reissner-nordström black hole interior for the einstein-maxwell-Klein-Gordon equations in spherical symmetry. Commun. Math. Phys. 360, 103 (2018). arXiv:1704.05790 [gr-qc]

    Article  ADS  MATH  Google Scholar 

  82. Van de Moortel M: The Breakdown of Weak Null Singularities Inside Black Holes, arXiv:1912.10890 [gr-qc]

  83. Van de Moortel, M.: Mass inflation and the \(C^2\)-inextendibility of spherically symmetric charged scalar field dynamical black holes. Commun. Math. Phys. 382(2), 1263 (2021). arXiv:2001.11156 [gr-qc]

    Article  ADS  MATH  Google Scholar 

  84. C Kehle, M Van de Moortel: Strong Cosmic Censorship in the Presence of Matter: The Decisive Effect of Horizon Oscillations on the Black Hole Interior Geometry, arXiv:2105.04604 [gr-qc]

  85. Marolf, D.: The dangers of extremes. Gen. Relativ. Gravit. 42, 2337 (2010). [arXiv:1005.2999 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. Bousso, R., Shahbazi-Moghaddam, A.: “Quantum Singularities”, arXiv:2206.07001 [hep-th]

  87. Grinberg, M., Maldacena, J.: Proper time to the black hole singularity from thermal one-point functions. JHEP 03, 131 (2021). [arXiv:2011.01004 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  88. McInnes, B.: Inside Flat Event Horizons, arXiv:2206.00198 [gr-qc]

  89. Penrose, R.: Singularities and Time-Asymmetry. In: Hawking, S.W., Israel, W. (eds.) General Relativity: An Einstein Centenary Survey, pp. 581–638. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  90. Penrose, R.: Before the Big Bang: An Outrageous New Perspective and Its Implications for Particle Physics, Contribution to: 10th European Particle Accelerator Conference (EPAC 06). Conf. Proc. C 060626, 2759 (2006)

  91. Egan, C.A., Lineweaver, C.H.: A larger estimate of the entropy of the universe. Astrophys. J. 710, 1825 (2010). [arXiv:0909.3983 [astro-ph.CO]]

    Article  ADS  Google Scholar 

  92. McInnes, B.: The Arrow Of Time In The Landscape, arXiv:0711.1656 [hep-th]

  93. Gibbons, G.W., Turok, N.: The measure problem in cosmology. Phys. Rev. D 77, 063516 (2008). arXiv:hep-th/0609095

    Article  ADS  Google Scholar 

  94. Penrose, R.: Singularities and Time-Asymmetry. In: Relativity, G., Survey, A.E.C. (eds.) Stephen William Hawking and Werner Israel. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  95. Lesourd, M.: Hawking’s area theorem with a weaker energy condition. Gen. Relativ. Gravit. 50(6), 61 (2018). arXiv:1711.06480 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  96. Isi, M., Farr, W.M., Giesler, M., Scheel, M.A., Teukolsky, S.A.: Testing the black-hole area law with GW150914. Phys. Rev. Lett. 127, 011103 (2021). arXiv:2012.04486 [gr-qc]

    Article  ADS  Google Scholar 

  97. Brustein, R., Medved, A.J., Yagi, K.: Lower limit on the entropy of black holes as inferred from gravitational wave observations. Phys. Rev. D 100(10), 104009 (2019). arXiv:1811.12283 [gr-qc]

    Article  ADS  Google Scholar 

  98. Smolin, L.: On the intrinsic entropy of the gravitational field. Gen. Relativ. Gravit. 17, 417 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  99. Clifton, T., Ellis, G.F.R., Tavakol, R.: A gravitational entropy proposal. Class. Quantum Grav. 30, 125009 (2013). arXiv:1303.5612 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  100. Pizaña, F.A., Sussman, R.A., Hidalgo, J.C.: Gravitational entropy in szekeres class i models. Class. Quantum Grav. 39, 185005 (2022). arXiv:2205.02985 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  101. Gregoris, D., Ong, Y.C., Wang, B.: Thermodynamics of shearing massless scalar field spacetimes is inconsistent with the weyl curvature hypothesis. Phys. Rev. D 102, 023539 (2020). arXiv:2004.10222 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  102. Robert, M.: Wald. University of Chicago Press, General Relativity (1984)

    Google Scholar 

  103. McInnes, B.: Planar black holes as a route to understanding the weak gravity conjecture. Nucl. Phys. B 983, 115933 (2022). [arXiv:2201.01939 [gr-qc]]

    Article  MathSciNet  MATH  Google Scholar 

  104. Gregory, R.: The Gregory-Laflamme Instability. In: Horowitz, G. (ed.) Black Holes in Higher Dimensions, pp. 29–43. Cambridge University Press, Cambridge (2012) . arXiv:1107.5821 [gr-qc]

    Chapter  Google Scholar 

  105. Andrade, T., Emparan, R., Licht, D., Luna, R.: Cosmic censorship violation in black hole collisions in higher dimensions. JHEP 04, 121 (2019). [arXiv:1812.05017 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  106. Strominger, A., Vafa, C.: Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B 379, 99 (1996). [arXiv:hep-th/9601029]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  107. Hara, T., Sakai, K., Kunitomo, S., Kajiura, D.: The Entropy Increase During the Black Hole Formation, In: Karas, V. and Matt, G. (Eds.) Black Holes from Stars to Galaxies—Across the Range of Masses Proceedings of IAU Symposium 238, pp.377, UK: Cambridge University Press, (2007)

  108. Aurell, E.: The Double Doors of the Horizon, arXiv:2206.11870 [gr-qc]

  109. Bahrami, S.: Saturating the Bekenstein-Hawking entropy bound with initial data sets for gravitational collapse. Phys. Rev. D 95, 026006 (2017). arXiv:1611.04044 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  110. Li, N., Li, X.-L., Song, S.-P.: An exploration of the black hole entropy via the Weyl tensor. Eur. Phys. J. C 76, 111 (2016). [arXiv:gr-qc/1510.09027]

    Article  ADS  Google Scholar 

  111. Brooks, D., Chavy-Waddy, P.C., Coley, A.A., Forget, A., Gregoris, D., MacCallum, M.A., McNutt, D.D.: Cartan invariants and event horizon detection, Gen. Relativ. Gravit. 50 (2018) 37, [arXiv:gr-qc/1709.03362]; “Correction to: Cartan invariants and event horizon detection", Gen. Relativ. Gravit. 52 (2020) 6

  112. Edery, A., Constantineau, B.: Extremal black holes, gravitational entropy and nonstationary metric fields. Class. Quantum Grav. 28, 045003 (2011). [arXiv:gr-qc/1010.5844]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  113. Brevik, I., Nojiri, S., Odintsov, S.D., Vanzo, L.: Entropy and universality of the Cardy-verlinde formula in a dark energy universe. Phys. Rev. D 70, 043520 (2004). [arXiv:hep-th/0401073]

    Article  ADS  MathSciNet  Google Scholar 

  114. Cognola, G., Elizalde, E., Nojiri, S., Odintsov, S.D., Zerbini, S.: One-loop \(f(R)\) gravity in de sitter universe. JCAP 02, 010 (2005). [arXiv:hep-th/0501096]

    Article  ADS  MathSciNet  Google Scholar 

  115. Akbar, M., Cai, R.G.: Friedmann equations of FRW universe in scalar-tensor gravity, \(F(R)\) gravity and first law of thermodynamics. Phys. Lett. B 635, 7 (2006). arXiv:hep-th/0602156

    Article  ADS  MathSciNet  MATH  Google Scholar 

  116. Gong, Y., Wang, A.: Friedmann equations and thermodynamics of apparent horizons. Phys. Rev. Lett. 99, 211301 (2007). [arXiv:hep-th/0704.0793]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  117. Brustein, R., Gorbonos, D., Hadad, M.: Wald’s entropy is equal to a quarter of the horizon area in units of the effective gravitational coupling. Phys. Rev. D 79, 044025 (2009). [arXiv:hep-th/0712.3206]

    Article  ADS  MathSciNet  Google Scholar 

  118. Dil, E.: Gravitational entropy of a Schwarzschild-type black hole. J. Korean Phys. Soc. 69, 6 (2016)

    Article  ADS  Google Scholar 

  119. Cai, R.-G.: A note on thermodynamics of black holes in Lovelock gravity. Phys. Lett. B 582, 237 (2004). [arXiv:hep-th/0311240]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  120. Cvetic, M., Nojiri, S., Odintsov, S.D.: Black Hole thermodynamics and negative entropy in de sitter and anti-de sitter Einstein-Gauss-Bonnet gravity. Nucl. Phys. B 628, 295 (2002). [arXiv:hep-th/0112045]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  121. Clunan, T., Ross, S.F., Smith, D.J.: On Gauss-Bonnet black hole entropy. Class. Quantum Grav. 21, 3447 (2004). [arXiv:gr-qc/0402044]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  122. Taj, S., Quevedo, H., Sanchez, A.: Geometrothermodynamics of five dimensional black holes in Einstein–Gauss–Bonnet theory. Gen. Relativ. Gravit. 44, 1489 (2012). [arXiv:math-ph/1104.3195]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  123. Emparan, R., Myers, R.C.: Instability of ultra-spinning black holes. JHEP 09, 025 (2003). [arXiv:hep-th/0308056]

    Article  ADS  MathSciNet  Google Scholar 

  124. Good, M.R.R., Ong, Y.C.: Are Black Holes Springlike?’. Phys. Rev. D 91, 044031 (2012). arXiv:1412.5432 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  125. Ong, Y.C.: GUP-corrected black hole thermodynamics and the maximum force conjecture. Phys. Lett. B 785, 217 (2018)

    Article  ADS  MATH  Google Scholar 

  126. Cardoso, V., Ikeda, T., Moore, C.J., Yoo, C.-M.: Remarks on the maximum luminosity. Phys. Rev. D 97, 084013 (2018). arXiv:1803.03271 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  127. Jowsey, A., Visser, M.: Reconsidering maximum luminosity. Int. J. Mod. Phys. D 30(14), 2142026 (2021). arXiv:2105.06650 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  128. Cao, L.M., Li, L.Y., Wu, L.B.: A bound on the rate of bondi mass loss. Phys. Rev. D 104(12), 124017 (2021). arXiv:2109.05973 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  129. Ruppeiner, G.: Riemannian geometry in thermodynamic fluctuation theory”, Rev. Mod. Phys. 67,: 605; Erratum: Rev. Mod. Phys. 68(1996), 313 (1995)

  130. Ruppeiner, G.: Thermodynamic curvature measures interactions. Am. J. Phys 78, 1170 (2010). arXiv:1007.2160 [cond-mat.stat-mech]

    Article  ADS  Google Scholar 

  131. Ruppeiner, G.: Thermodynamic curvature and phase transitions in Kerr–Newman black holes. Phys. Rev. D 78, 024016 (2008). arXiv:0802.1326 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  132. Janyszek, H., Mrugaa, R.: Riemannian geometry and stability of ideal quantum gases. J. Phys. A Math. Gen. 23, 467 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  133. Janyszek, H.: Riemannian geometry and stability of thermodynamical equilibrium systems. J. Phys. A Math. Gen. 23, 477 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  134. Åman, J.E., Bengtsson, I., Pidokrajt, N.: Thermodynamic metrics and black hole physics. Entropy 17, 6503 (2015). arXiv:1507.06097 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  135. Barrow, J.D., Tipler, F.J.: Action principles in nature. Nature 331, 31 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  136. Barrow, J.D.: Finite action principle revisited. Phys. Rev. D 101, 023527 (2020). arXiv:1912.12926 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  137. Lehners, J.L., Stelle, K.S.: A safe beginning for the universe? Phys. Rev. D 100, 083540 (2019). arXiv:1909.01169 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  138. Bousso, R., Shahbazi-Moghaddam, A.: Singularities From Entropy, arXiv:2201.11132 [hep-th]

  139. Anastopoulos, C., Savvidou, N.: Entropy of singularities in self-gravitating radiation. Class. Quantum Grav. 29, 025004 (2012). [arXiv:1103.3898 [gr-qc]]

    Article  MathSciNet  MATH  Google Scholar 

  140. Bousso, R., Dong, X., Engelhardt, N., Faulkner, T., Hartman, T., Shenker, S.H., Stanford, D.: Snowmass white paper: quantum aspects of black holes and the emergence of spacetime, arXiv:2201.03096 [hep-th]

  141. Faulkner, T., Hartman, T., Headrick, M., Rangamani, M., Swingle, B.: Snowmass white paper: quantum information in quantum field theory and quantum gravity, arXiv:2203.07117 [hep-th]

  142. Dongshan, H., Qingyu, C.: Area entropy and quantized mass of black holes from information theory. Entropy 23(7), 858 (2021). https://doi.org/10.3390/e23070858

  143. Alonso-Serrano, A., Visser, M.: On burning a lump of coal. Phys. Lett. B 757, 383 (2016). [arXiv:1511.01162 [gr-qc]]

    Article  ADS  Google Scholar 

  144. Aguirre, A., Carroll, S.M., Johnson, M.C.: Out of equilibrium: understanding cosmological evolution to lower-entropy states. JCAP 02, 024 (2012). [arXiv:1108.0417 [hep-th]]

    Article  ADS  Google Scholar 

  145. Dougherty, J., Callender, C.: Black Hole Thermodynamics: More Than an Analogy?, PhilSci Archive, http://philsci-archive.pitt.edu/id/eprint/13195

  146. Kragh, H.: Max Planck: The Reluctant Revolutionary, Physics World, December 2020, https://physicsworld.com/a/max-planck-the-reluctant-revolutionary/

  147. Parikh, M., Svesko, A.: Thermodynamic origin of the null energy condition. Phys. Rev. D 95, 104002 (2017). [arXiv:1511.06460 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  148. Te Vrugt, M., Needham, P., Schmitz, G.J.: “Is thermodynamics fundamental?”, arXiv:2204.04352 [physics.hist-ph]

  149. Lieb, E.H., Yngvason, J.: The physics and mathematics of the second law of thermodynamics. Phys. Rept. 310, 1 (1999). arXiv:cond-mat/9708200 [cond-mat.soft]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  150. Lieb, E.H., Yngvason, J.: A guide to entropy and the second law of thermodynamics. Notices Am. Math. Soc. 45, 571 (1998). arXiv:math-ph/9805005

    MathSciNet  MATH  Google Scholar 

  151. Stoica, O.C.: Metric dimensional reduction at singularities with implications to quantum gravity. Annal. Phys. 347, 74 (2014). arXiv:1205.2586 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  152. Stoica, O.C.: The geometry of black hole singularities. Adv. High Energy Phys. 2014, 907518 (2014). arXiv:1401.6283 [gr-qc]

    Article  MathSciNet  MATH  Google Scholar 

  153. Hawking, S.W., Penrose, R.: The Nature of Space and Time, Princeton Science Library (2000)

  154. Horowitz, G.T., Maldacena, J.: The black hole final state. JHEP 02, 008 (2004). arXiv:hep-th/0310281

    Article  ADS  MathSciNet  Google Scholar 

  155. Bouhmadi-López, M., Brahma, S., Chen, C.-Y., Chen, P., Yeom, D.: Annihilation-To-nothing: a quantum gravitational boundary condition for the Schwarzschild black hole. JCAP 11, 002 (2020). arXiv:1911.02129 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  156. Perry, M.J.: Future Boundaries and the Black Hole Information Paradox, arXiv:2108.05744 [hep-th]

  157. McInnes, B.: Black hole final state conspiracies. Nucl. Phys. B 807, 33 (2009). [arXiv:0806.3818 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  158. Eglseer, L., Hofmann, S., Schneider, M.: Quantum populations near black-hole singularities. Phys. Rev. D 104, 105010 (2021). [arXiv:1710.07645 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  159. Hofmann, S., Schneider, M.: Classical versus quantum completeness. Phys. Rev. D 91, 125028 (2015). [arXiv:1504.05580 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  160. Perry, M.J.: No Future in Black Holes, arXiv:2106.03715 [hep-th]

Download references

Acknowledgements

I thank the organizing committee for the invitation to present my research during the SCRI21 meeting, as well as for the opportunity to contribute to the proceeding. It is an honor to participate in such a tribute to Sir Roger Penrose. Instead of focusing on a small aspect that I talked about in the presentation during the meeting, I decided to write a review to organize some of my current thoughts, which span some topics that are related to or inspired by Penrose’s own works, including the singularity theorem, cosmic censorship conjecture, and the Weyl curvature hypothesis. I would like to take this opportunity to thank Penrose himself for his remarkable contributions to mathematics, physics, and philosophy, which continue to provide rich ideas for research. I also thank the National Natural Science Foundation of China (No. 11922508) for funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yen Chin Ong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

An invited contribution to the SCRI21 Meeting “Singularity Theorems, Causality, and All That: A Tribute to Roger Penrose”

This article belongs to a Topical Collection: Singularity theorems, causality, and all that (SCRI21).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ong, Y.C. On black hole thermodynamics, singularity, and gravitational entropy. Gen Relativ Gravit 54, 132 (2022). https://doi.org/10.1007/s10714-022-03008-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-03008-0

Keywords

Navigation