Skip to main content

Black Holes and Thermodynamics: The First Half Century

  • Chapter
  • First Online:
Quantum Aspects of Black Holes

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 178))

Abstract

Black hole thermodynamics emerged from the classical general relativistic laws of black hole mechanics, summarized by Bardeen–Carter–Hawking, together with the physical insights by Bekenstein about black hole entropy and the semi-classical derivation by Hawking of black hole evaporation. The black hole entropy law inspired the formulation of the holographic principle by ’t Hooft and Susskind, which is famously realized in the gauge/gravity correspondence by Maldacena, Gubser–Klebanov–Polaykov and Witten within string theory. Moreover, the microscopic derivation of black hole entropy, pioneered by Strominger–Vafa within string theory, often serves as a consistency check for putative theories of quantum gravity. In this book chapter we review these developments over five decades, starting in the 1960s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In quantum information language the vacuum quantum state in a black hole space-time for each mode is a two-mode squeezed vacuum, similar to what happens for primordial density fluctuations in cosmology [53].

  2. 2.

    The sum should be regarded as formal since the quantum theory constructions of the two observers are unitarily inequivalent [49].

  3. 3.

    The stretched horizon (or the earlier “brick wall” [119]) is also discussed in these papers and captures the membrane description of a black hole suitable for a distant observer.

  4. 4.

    The derivation in [137] exploits a spherically symmetric ansatz in \(2+\varepsilon \) dimensions, dualizes to a different action for which the limit \(\varepsilon \rightarrow 0\) is well-defined and dualizes back after taking the limit.

  5. 5.

    \(\text {`}\)t Hooft also provided as an example a realization of the holographic principle in terms of some cellular automaton model.

  6. 6.

    Such an encoding results in an entropy that scales like the area, which suggests a local and non-gravitational description on the boundary.

  7. 7.

    The dual field theory at finite temperature is defined on \(S^{3}\times S^{1}\) and therefore has compact volume. Nevertheless, a phase transition is possible because the theory is considered in the large \(N\) limit.

  8. 8.

    We mention in the conclusions that this link is likely to grow stronger in the future. Besides the numerous recent papers on holographic entanglement entropy, some selected papers that also provide such links are [308, 309] and references therein.

  9. 9.

    Loop quantum gravity does provide such a prediction [363, 364], and it disagrees with the semi-classical result.

References

  1. Carlip, S.: Quantum gravity: a progress report. Rept. Prog. Phys. 64, 885 (2001). arXiv:gr-qc/0108040

  2. Kerr, R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237–238 (1963)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Bekenstein, J.: Black holes and the second law. Lett. Nuovo Cim. 4, 737–740 (1972)

    ADS  Google Scholar 

  4. Bardeen, J.M., Carter, B., Hawking, S.: The four laws of black hole mechanics. Commun. Math. Phys. 31, 161–170 (1973)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Tolman, R.: Relativity, Thermodynamics, and Cosmology. Dover Books on Physics Series. Dover Publications, New York (1987)

    Google Scholar 

  6. Oppenheimer, J., Volkoff, G.: On massive neutron cores. Phys. Rev. 55, 374–381 (1939)

    ADS  MATH  Google Scholar 

  7. Tolman, R.C.: Static solutions of einstein’s field equations for spheres of fluid, Phys. Rev. 55, 364–373 (1939)

    Google Scholar 

  8. Zel’dovich Y.B.: Zh. Eksp. Teoret. Fiz.41, 1609 (1961)

    Google Scholar 

  9. Bondi, H.: Massive spheres in general relativity. Proc. Roy. Soc. Lond. A281, 303–317 (1964)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Sorkin, R.D., Wald, R.M., Zhang, Z.J.: Entropy of selfgravitating radiation. Gen. Rel. Grav. 13, 1127–1146 (1981)

    ADS  Google Scholar 

  11. Newman, E.T., Couch, R., Chinnapared, K., Exton, A., Prakash, A., et al.: Metric of a rotating, charged mass. J. Math. Phys. 6, 918–919 (1965)

    ADS  MathSciNet  Google Scholar 

  12. Ginzburg, V., Ozernoi, L.: Sov. Phys. JETP 20, 689 (1965)

    Google Scholar 

  13. Doroshkevich, A., Zel’dovich, Y., Novikov I.: Gravitational collapse of nonsymmetric and rotating masses, JETP 49 (1965)

    Google Scholar 

  14. Israel, W.: Event horizons in static vacuum space-times. Phys. Rev. 164, 1776–1779 (1967)

    ADS  Google Scholar 

  15. Israel, W.: Event horizons in static electrovac space-times. Commun. Math. Phys. 8, 245–260 (1968)

    ADS  MathSciNet  Google Scholar 

  16. Carter, B.: Axisymmetric black hole has only two degrees of freedom. Phys. Rev. Lett. 26, 331–333 (1971)

    ADS  Google Scholar 

  17. Robinson, D.: Uniqueness of the kerr black hole. Phys. Rev. Lett. 34, 905–906 (1975)

    ADS  Google Scholar 

  18. Mazur, P.: Proof of uniqueness of the kerr-newman black hole solution. J. Phys. A15, 3173–3180 (1982)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Bunting, G.: Proof of the uniqueness conjecture for Black Holes. Ph.D. thesis, University. New England, Armadale (1983)

    Google Scholar 

  20. Chrusciel, P.T., Costa J.L.: On uniqueness of stationary vacuum black holes, Asterisque 321, 195–265 (2008). arXiv:0806.0016

  21. Chrusciel, P.T., Costa, J.L., Heusler, M.: Stationary black holes: uniqueness and beyond, Living Rev. Rel. 15, 7 (2012). arXiv:1205.6112

  22. Misner, C.W., Thorne, K., Wheeler, J.: Gravitation. W.H Freeman, Londan (1973)

    Google Scholar 

  23. Penrose, R.: Gravitational collapse: the role of general relativity. Riv. Nuovo Cim. 1, 252–276 (1969)

    ADS  Google Scholar 

  24. Christodoulou, D.: Reversible and irreversible transformations in black hole physics. Phys. Rev. Lett. 25, 1596–1597 (1970)

    ADS  Google Scholar 

  25. Christodoulou, D., Ruffini, R.: Reversible transformations of a charged black hole. Phys. Rev. D4, 3552–3555 (1971)

    ADS  Google Scholar 

  26. Misner, C.W.: Interpretation of gravitational-wave observations. Phys. Rev. Lett. 28, 994–997 (1972)

    ADS  Google Scholar 

  27. Press, W.H., Teukolsky, S.A.: Floating orbits, superradiant scattering and the black-hole bomb. Nature 238, 211–212 (1972)

    ADS  Google Scholar 

  28. Starobinsky, A.: Amplification of waves during reflection from a rotating black hole. JETP 64(1), 28 (1972)

    Google Scholar 

  29. Zel’dovich, Y.B.: Amplification of cylindrical electromagnetic waves reflected from a rotating body. JETP 35(6), 1085 (1971)

    Google Scholar 

  30. Zel’dovich, Y.B.: Generation of waves by a rotating body. Sov. Phys. JETP Lett. 14, 180 (1971)

    ADS  Google Scholar 

  31. Carter, B.: Global structure of the kerr family of gravitational fields. Phys. Rev. 174, 1559–1571 (1968)

    ADS  MATH  Google Scholar 

  32. Teukolsky, S.A.: Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations. Astrophys. J. 185, 635–647 (1973)

    ADS  Google Scholar 

  33. Teukolsky, S., Press, W.: Perturbations of a rotating black hole. III-interaction of the hole with gravitational and electromagnet ic radiation. Astrophys. J. 193, 443–461 (1974)

    ADS  Google Scholar 

  34. Starobinsky, A., Churilov, S.: Amplification of electromagnetic and gravitational waves scattered by a rotating black hole. JETP 381, 1 (1974)

    Google Scholar 

  35. Unruh, W.: Separability of the neutrino equations in a kerr background. Phys. Rev. Lett. 31, 1265–1267 (1973)

    Google Scholar 

  36. Hawking, S.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Klein, O.: Die reflexion von elektronen an einem potential sprung nach der relativistischen dynamik von dirac. Z. Phys. 53, 157 (1929)

    ADS  MATH  Google Scholar 

  38. Dombey, N., Calogeracos, A.: Seventy years of the klein paradox. Phys. Rept. 315, 41–58 (1999)

    ADS  MATH  Google Scholar 

  39. Wald, R.M.: General Relativity. The University of Chicago Press, Chicago (1984)

    Google Scholar 

  40. Hawking, S.W.: Black hole explosions. Nature 248, 30–31 (1974)

    ADS  MATH  Google Scholar 

  41. Hawking, S., Ellis, G.: The large scale structure of space-time. Cambridge University Press, Cambridge (1973)

    MATH  Google Scholar 

  42. Carter, B.: Black hole equilibrium states, In Black Holes—Les astres occlus. Gordon and Breach Science Publishers, (1973)

    Google Scholar 

  43. Penrose, R.: Structure of space-time. In: DeWitt, J.W.C.M. (ed.) Battelle Rencontres, 1967 Lectures in Mathematics and Physics. Benjamin, New York (1968)

    Google Scholar 

  44. Hawking, S.W.: Gravitational radiation from colliding black holes. Phys. Rev. Lett. 26, 1344–1346 (1971)

    ADS  Google Scholar 

  45. Hawking, S.: Black holes in general relativity. Commun. Math. Phys. 25, 152–166 (1972)

    ADS  MathSciNet  Google Scholar 

  46. Bekenstein, J.: Extraction of energy and charge from a black hole. Phys. Rev. D7, 949–953 (1973)

    ADS  Google Scholar 

  47. Wald, R.M.: Gravitational spin interaction. Phys. Rev. D6, 406–413 (1972)

    ADS  Google Scholar 

  48. Smarr, L.: Mass formula for kerr black holes. Phys. Rev. Lett. 30, 71–73 (1973)

    ADS  Google Scholar 

  49. Wald, R.M.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. University of Chicago Press, Chicago (1994)

    Google Scholar 

  50. Nernst, W.: Thermodynamik und spezifische wärme. Preuss. Akad. Wiss. Sitzungsberichte 1, 134140 (1912)

    MATH  Google Scholar 

  51. Israel, W.: Third law of black-hole dynamics: a formulation and proof, Phys. Rev. Lett. 57, 397–399 (1986)

    Google Scholar 

  52. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D7, 2333–2346 (1973)

    ADS  MathSciNet  MATH  Google Scholar 

  53. Grishchuk, L., Sidorov, Y.: Squeezed quantum states of relic gravitons and primordial density fluctuations. Phys. Rev. D42, 3413–3421 (1990)

    ADS  MathSciNet  Google Scholar 

  54. Wald, R.M.: On particle creation by black holes. Commun. Math. Phys. 45, 9–34 (1975)

    ADS  MathSciNet  Google Scholar 

  55. Parker, L.: Probability distribution of particles created by a black hole. Phys. Rev. D12, 1519–1525 (1975)

    ADS  Google Scholar 

  56. Hawking, S.W.: Breakdown of predictability in gravitational collapse. Phys. Rev. D14, 2460–2473 (1976)

    ADS  MathSciNet  Google Scholar 

  57. Bekenstein, J., Meisels, A.: Einstein a and b coefficients for a black hole. Phys. Rev. D15, 2775–2781 (1977)

    ADS  Google Scholar 

  58. Panangaden, P., Wald, R.M.: Probability distribution for radiation from a black hole in the presence of incoming radiation. Phys. Rev. D16, 929–932 (1977)

    ADS  Google Scholar 

  59. Boulware, D.G.: Quantum field theory in schwarzschild and rindler spaces. Phys. Rev. D11, 1404 (1975)

    ADS  MathSciNet  Google Scholar 

  60. Gibbons, G., Perry, M.: Black holes and thermal green’s functions. Proc. Roy. Soc. Lond. A358, 467–494 (1978)

    ADS  MathSciNet  Google Scholar 

  61. Davies, P.: Scalar particle production in schwarzschild and rindler metrics. J. Phys. A8, 609–616 (1975)

    ADS  Google Scholar 

  62. DeWitt, B.S.: Quantum field theory in curved space-time. Phys. Rept. 19, 295–357 (1975)

    ADS  Google Scholar 

  63. Gerlach, U.: The mechanism of black body radiation from an incipient black hole. Phys. Rev. D14, 1479–1508 (1976)

    ADS  Google Scholar 

  64. Parikh, M.K., Wilczek, F.: Hawking radiation as tunneling, Phys. Rev. Lett. 85, 5042–5045 (2000). arXiv:hep-th/9907001

  65. Christensen, S.M., Fulling, S.A.: Trace anomalies and the hawking effect. Phys. Rev. D15, 2088–2104 (1977)

    ADS  Google Scholar 

  66. Strominger, A.: Les Houches lectures on black holes. arXiv:hep-th/9501071

  67. Grumiller, D., Kummer, W., Vassilevich, D.V.: Dilaton gravity in two dimensions, Phys. Rept. 369, 327–429 (2002). arXiv:hep-th/0204253

  68. Robinson, S.P., Wilczek, F.: A relationship between hawking radiation and gravitational anomalies, Phys. Rev. Lett. 95, 011303 (2005). arXiv:gr-qc/0502074

  69. Iso, S., Umetsu, H., Wilczek, F.: Anomalies, hawking radiations and regularity in rotating black holes, Phys. Rev. D 74, 044017 (2006). arXiv:hep-th/0606018

  70. Iso, S., Umetsu, H., Wilczek, F.: Hawking radiation from charged black holes via gauge and gravitational anomalies, Phys. Rev. Lett. 96, 151302 (2006). arXiv:hep-th/0602146

  71. Gibbons, G., Hawking, S., Perry, M.: Path integrals and the indefiniteness of the gravitational action. Nucl. Phys. B138, 141 (1978)

    ADS  MathSciNet  Google Scholar 

  72. Gibbons, G.W., Hawking, S.W.: Action integrals and partition functions in quantum gravity. Phys. Rev. D15, 2752–2756 (1977)

    ADS  Google Scholar 

  73. Hawking, S.: Quantum gravity and path integrals. Phys. Rev. D18, 1747–1753 (1978)

    ADS  Google Scholar 

  74. Gross, D.J., Perry, M.J., Yaffe, L.G.: Instability of flat space at finite temperature. Phys. Rev. D25, 330–355 (1982)

    ADS  MathSciNet  MATH  Google Scholar 

  75. Gibbons, G.W., Hawking, S.W.: Classification of gravitational instanton symmetries. Commun. Math. Phys. 66, 291–310 (1979)

    ADS  MathSciNet  Google Scholar 

  76. Gibbons, G., Perry, M.J.: New gravitational instantons and their interactions. Phys. Rev. D22, 313 (1980)

    ADS  MathSciNet  Google Scholar 

  77. Gibbons, G., Perry, M.: Quantizing gravitational instantons. Nucl. Phys. B146, 90 (1978)

    ADS  MathSciNet  Google Scholar 

  78. Zaumen, W.: Upper bound on the electric charge of a black hole. Nature 247, 530 (1974)

    ADS  Google Scholar 

  79. Carter, B.: Charge and particle conservation in black hole decay. Phys. Rev. Lett. 33, 558–561 (1974)

    ADS  Google Scholar 

  80. Gibbons, G.: Vacuum polarization and the spontaneous loss of charge by black holes. Commun. Math. Phys. 44, 245–264 (1975)

    ADS  MathSciNet  Google Scholar 

  81. Page, D.N.: Particle emission rates from a black hole: massless particles from an uncharged, nonrotating hole. Phys. Rev. D13, 198–206 (1976)

    ADS  Google Scholar 

  82. Page, D.N.: Particle emission rates from a black hole. 3. Charged leptons from a nonrotating hole. Phys. Rev. D16, 2402–2411 (1977)

    ADS  Google Scholar 

  83. Page, D.N.: Particle emission rates from a black hole. 2. Massless particles from a rotating hole. Phys. Rev. D14, 3260–3273 (1976)

    ADS  Google Scholar 

  84. Unruh, W.: Second quantization in the kerr metric. Phys. Rev. D10, 3194–3205 (1974)

    ADS  Google Scholar 

  85. Vilenkin, A.: Macroscopic parity violating effects: neutrino fluxes from rotating black holes and in rotating thermal radiation. Phys. Rev. D20, 1807–1812 (1979)

    ADS  MathSciNet  Google Scholar 

  86. Leahy, D., Unruh, W.: Angular dependence of neutrino emission from rotating black holes. Phys. Rev. D19, 3509–3515 (1979)

    ADS  Google Scholar 

  87. Fulling, S.A.: Nonuniqueness of canonical field quantization in riemannian space-time. Phys. Rev. D7, 2850–2862 (1973)

    ADS  Google Scholar 

  88. Unruh, W.G.: Notes on black hole evaporation. Phys. Rev. D14, 870 (1976)

    ADS  Google Scholar 

  89. Unruh, W.G., Weiss, N.: Acceleration radiation in interacting field theories. Phys. Rev. D29, 1656 (1984)

    ADS  MathSciNet  Google Scholar 

  90. Fulling, S., Ruijsenaars, S.: Temperature, periodicity and horizons. Phys. Rep. 152(3), 135–176 (1987)

    ADS  MathSciNet  Google Scholar 

  91. Bisognano, J., Wichmann, E.: On the duality condition for a hermitian scalar field. J. Math. Phys. 16, 985–1007 (1975)

    ADS  MathSciNet  MATH  Google Scholar 

  92. Bisognano, J., Wichmann, E.: On the duality condition for quantum fields. J. Math. Phys. 17, 303–321 (1976)

    ADS  MathSciNet  Google Scholar 

  93. Sewell, G.L.: Quantum fields on manifolds: PCT and gravitationally induced thermal states. Annals Phys. 141, 201–224 (1982)

    ADS  MathSciNet  Google Scholar 

  94. Unruh, W.G., Wald, R.M.: What happens when an accelerating observer detects a rindler particle. Phys. Rev. D29, 1047–1056 (1984)

    ADS  Google Scholar 

  95. Crispino, L.C., Higuchi, A., Matsas, G.E.: The Unruh effect and its applications, Rev. Mod. Phys. 80, 787–838 (2008). arXiv:0710.5373

  96. Bekenstein, J.D.: A universal upper bound on the entropy to energy ratio for bounded systems. Phys. Rev. D23, 287 (1981)

    ADS  MathSciNet  Google Scholar 

  97. Unruh, W., Wald, R.M.: Acceleration radiation and generalized second law of thermodynamics. Phys. Rev. D25, 942–958 (1982)

    ADS  Google Scholar 

  98. Unruh, W., Wald, R.M.: Entropy bounds, acceleration radiation, and the generalized second law. Phys. Rev. D27, 2271–2276 (1983)

    ADS  Google Scholar 

  99. Hartle, J.B., Hawking, S.W.: Path integral derivation of black hole radiance. Phys. Rev. D13, 2188–2203 (1976)

    ADS  Google Scholar 

  100. Israel, W.: Thermo field dynamics of black holes. Phys. Lett. A57, 107–110 (1976)

    ADS  MathSciNet  Google Scholar 

  101. Kay, B.S., Wald, R.M.: Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on space-times with a bifurcate killing horizon. Phys. Rept. 207, 49–136 (1991)

    ADS  MATH  Google Scholar 

  102. Unruh, W.G.: Experimental black-hole evaporation? Phys. Rev. Lett. 46, 1351–1353 (1981)

    Google Scholar 

  103. Novello, M., Visser, M., Volovik, G. (eds.): Artificial Black Holes. World Scientific, River Edge, USA (2002)

    Google Scholar 

  104. Barcelo, C., Liberati, S., Visser, M.: Analogue gravity. Living Rev. Rel. 8, 12 (2005). arXiv:gr-qc/0505065

  105. Ackermann, M et al., Fermi GBM/LAT Collaborations Collaboration A limit on the variation of the speed of light arising from quantum gravity effects, Nature 462, 331–334 (2009) .arXiv:0908.1832

    Google Scholar 

  106. Jacobson, T.: Black hole evaporation and ultrashort distances. Phys. Rev. D44, 1731–1739 (1991)

    ADS  MathSciNet  Google Scholar 

  107. Unruh, W.: Sonic analog of black holes and the effects of high frequencies on black hole evaporation. Phys. Rev. D51, 2827–2838 (1995)

    ADS  Google Scholar 

  108. Corley, S., Jacobson, T.: Hawking spectrum and high frequency dispersion, Phys. Rev. D 54, 1568–1586 (1996). arXiv:hep-th/9601073

  109. Jacobson T.: Black hole radiation in the presence of a short distance cutoff, Phys. Rev. D 48, 728–741 (1993). arXiv:hep-th/9303103

  110. Brout, R, Massar S, Parentani, R., Spindel, P.: Hawking radiation without transPlanckian frequencies, Phys. Rev. D52, 4559–4568 (1995). arXiv:hep-th/9506121

  111. Visser, M.: Hawking radiation without black hole entropy, Phys. Rev. Lett. 80, 3436–3439 (1998). arXiv:gr-qc/9712016

  112. Jacobson, T.: On the origin of the outgoing black hole modes, Phys. Rev. D53, 7082–7088 (1996). arXiv:hep-th/9601064

  113. Visser, M.: Acoustic black holes: horizons, ergospheres, and hawking radiation, Class. Quant. Grav. 15, 1767–1791 (1998), http://www.arXiv.org/abs/gr-qc/9712010

  114. Brown, J.: Lower dimensional gravity. World Scientific, Singapore (1988)

    Google Scholar 

  115. Callan, C.G., Giddings, Jr S.B., Harvey, J.A., Strominger, A.: Evanescent black holes, Phys. Rev. D 45, 1005–1009 (1992). arXiv:hep-th/9111056

  116. Russo, J.G., Susskind, L., Thorlacius, L.: The endpoint of hawking radiation. Phys. Rev. D 46, 3444–3449 (1992). arXiv:hep-th/9206070

  117. Susskind, L., Thorlacius, L., Uglum, J.: The Stretched horizon and black hole complementarity. Phys. Rev. D 48 3743–3761 (1993). arXiv:hep-th/9306069

  118. Stephens, C.R., ’t Hooft, G., Whiting, B.F.: Black hole evaporation without information loss. Class. Quant. Grav. 11, 621–648 (1994). arXiv:gr-qc/9310006

  119. ’t Hooft, G.: On the quantum structure of a black hole, Nucl. Phys. B 256, 727 (1985)

    Google Scholar 

  120. Jackiw, R.: Liouville field theory: a two-dimensional model for gravity? In: Christensen, S. (ed.) Quantum Theory Of Gravity, pp. 403–420. Adam Hilger, Bristol (1984)

    Google Scholar 

  121. Teitelboim, C.: The hamiltonian structure of two-dimensional space-time and its relation with the conformal anomaly. In: Christensen, S. (ed.) Quantum Theory Of Gravity, pp. 327–344. Adam Hilger, Bristol (1984)

    Google Scholar 

  122. Isler, K., Trugenberger, C.A.: A gauge theory of two-dimensional quantum gravity. Phys. Rev. Lett. 63, 834 (1989)

    ADS  MathSciNet  Google Scholar 

  123. Chamseddine, A.H., Wyler, D.: Gauge theory of topological gravity in (1+1)-dimensions. Phys. Lett. B228, 75 (1989)

    ADS  MathSciNet  Google Scholar 

  124. Cangemi, D., Jackiw, R.: Gauge invariant formulations of lineal gravity. Phys. Rev. Lett. 69, 233–236 (1992). arXiv:hep-th/9203056

  125. Ikeda, N., Izawa, K.I.: General form of dilaton gravity and nonlinear gauge theory. Prog. Theor. Phys. 90, 237–246 (1993). arXiv:hep-th/9304012

  126. Ikeda, N.: Two-dimensional gravity and nonlinear gauge theory. Ann. Phys. 235, 435–464 (1994). arXiv:hep-th/9312059

  127. Schaller, P., Strobl, T.: Poisson structure induced (topological) field theories. Mod. Phys. Lett. A 9, 3129–3136 (1994), arXiv:hep-th/9405110

  128. Berger, B.K., Chitre, D.M., Moncrief, V.E., Nutku, Y.: Hamiltonian formulation of spherically symmetric gravitational fields. Phys. Rev. D5, 2467–2470 (1972)

    ADS  Google Scholar 

  129. Benguria, R., Cordero, P., Teitelboim, C.: Aspects of the hamiltonian dynamics of interacting gravitational gauge and higgs fields with applications to spherical symmetry. Nucl. Phys. B122, 61 (1977)

    ADS  Google Scholar 

  130. Thomi, P., Isaak, B., Hájíček, P.: Spherically symmetric systems of fields and black holes. 1. definition and properties of apparent horizon. Phys. Rev. D30, 1168 (1984)

    ADS  MathSciNet  Google Scholar 

  131. Hájíček, P.: Spherically symmetric systems of fields and black holes. 2. Apparent horizon in canonical formalism. Phys. Rev. D30, 1178 (1984)

    ADS  MathSciNet  Google Scholar 

  132. Kuchař, K.V.: Geometrodynamics of schwarzschild black holes. Phys. Rev. D 50, 3961–3981 (1994). arXiv:gr-qc/9403003

  133. Soda, J.: Hierarchical dimensional reduction and gluing geometries. Prog. Theor. Phys. 89, 1303–1310 (1993)

    ADS  MathSciNet  Google Scholar 

  134. Emparan, R., Grumiller, D., Tanabe, K.: Large D gravity and low D strings, Phys. Rev. Lett. 110, 251102 (2013). arXiv:1303.1995

  135. Weinberg, S.: In General Relativity, In: Hawking, S., Israel, W. (eds.) An Einstein Centenary Survey. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  136. Mann, R.B. Ross, S.F.: The D \(\rightarrow \) 2 limit of general relativity. Class. Quant. Grav. 10, 345–351 (1993). arXiv:gr-qc/9208004

  137. Grumiller, D., Jackiw, R.: Liouville Gravity from Einstein Gravity, In: Recent Developments in Theoretical Physics, Gosh, S., Kar, G. (eds.) World Scientific, Singapore pp. 331–343, 2010. arXiv:0712.3775

  138. Ginsparg, P., Moore, G.W.: Lectures on 2-d gravity and 2-d string theory, arXiv:hep-th/9304011

  139. Nakayama, Y.: Liouville field theory: a decade after the revolution. Int. J. Mod. Phys. A 19, 2771–2930 (2004). arXiv:hep-th/0402009

  140. Katanaev, M.O., Volovich, I.V.: String model with dynamical geometry and torsion. Phys. Lett. B175, 413–416 (1986)

    ADS  MathSciNet  Google Scholar 

  141. Kummer, W., Schwarz, D.J.: General analytic solution of r**2 gravity with dynamical torsion in two-dimensions. Phys. Rev. D45, 3628–3635 (1992)

    ADS  MathSciNet  Google Scholar 

  142. Schaller, P., Strobl, T.: Canonical quantization of nonEinsteinian gravity and the problem of time. Class. Quant. Grav. 11, 331–346 (1994). arXiv:hep-th/9211054

  143. Katanaev, M.O., Kummer, W,. Liebl, H.: Geometric interpretation and classification of global solutions in generalized dilaton gravity. Phys. Rev. D53, 5609–5618 (1996). arXiv:gr-qc/9511009

  144. Callan Jr, C.G., Martinec, E.J., Perry, M.J., Friedan, D.: Strings in background fields. Nucl. Phys. B262, 593 (1985)

    ADS  MathSciNet  Google Scholar 

  145. Mandal, G., Sengupta, A.M., Wadia, S.R.: Classical solutions of two-dimensional string theory. Mod. Phys. Lett. A6, 1685–1692 (1991)

    ADS  MATH  Google Scholar 

  146. Elitzur, S., Forge, A., Rabinovici, E.: Some global aspects of string compactifications. Nucl. Phys. B359, 581–610 (1991)

    ADS  MathSciNet  Google Scholar 

  147. Witten, E.: On string theory and black holes. Phys. Rev. D44, 314–324 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  148. Dijkgraaf, R., Verlinde, H., Verlinde, E.: String propagation in a black hole geometry. Nucl. Phys. B371, 269–314 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  149. Klebanov, I.R.: String theory in two-dimensions, arXiv:hep-th/9108019

  150. Strominger, A.: Les Houches lectures on black holes, Talk given at NATO Advanced Study Institute arXiv:hep-th/9501071

  151. Grumiller, D., Meyer, R.: Ramifications of lineland. Turk. J. Phys. 30, 349–378 (2006). arXiv:hep-th/0604049

  152. Gegenberg, J., Kunstatter, G., Louis-Martinez, D.: Observables for two-dimensional black holes. Phys. Rev. D 51, 1781–1786 (1995). arXiv:gr-qc/9408015

  153. Grumiller D., McNees, R.: Thermodynamics of black holes in two (and higher) dimensions. JHEP 04, 074 (2007). arXiv:hep-th/0703230

  154. Wald, R.M.: Black hole entropy is the Noether charge. Phys. Rev. D 48, 3427–3431 (1993) arXiv:gr-qc/9307038

  155. Iyer V., Wald, R.M.: Some properties of Noether charge and a proposal for dynamical black hole entropy. Phys. Rev. D50, 846–864 (1994). arXiv:gr-qc/9403028

  156. York Jr, J.W.: Black hole thermodynamics and the euclidean einstein action. Phys. Rev. D33, 2092–2099 (1986)

    ADS  MathSciNet  MATH  Google Scholar 

  157. Hawking, S.W., Page, D.N.: Thermodynamics of black holes in anti-de sitter space. Commun. Math. Phys. 87, 577 (1983)

    ADS  MathSciNet  Google Scholar 

  158. Deser, S., Jackiw, R., Templeton, S.: Three-dimensional massive gauge theories. Phys. Rev. Lett. 48, 975–978 (1982)

    ADS  Google Scholar 

  159. Deser, S., Jackiw, R., Templeton, S.: Topologically massive gauge theories. Ann. Phys. 140, 372–411 (1982)

    ADS  MathSciNet  Google Scholar 

  160. Deser, S., Jackiw, R., Templeton, S.: Topologically massive gauge theories. Erratum-ibid. 185, 406 (1988)

    Google Scholar 

  161. Deser S., Jackiw R., ’t Hooft G.: Three-dimensional Einstein Gravity: dynamics of flat space. Ann. Phys. 152, 220 (1984)

    Google Scholar 

  162. Brown, J.D., Henneaux, M.: Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity. Commun. Math. Phys. 104, 207–226 (1986)

    ADS  MathSciNet  MATH  Google Scholar 

  163. Bañados, M., Teitelboim, C., Zanelli, J.: The black hole in three-dimensional space-time. Phys. Rev. Lett. 69, 1849–1851 (1992). arXiv:hep-th/9204099

  164. Bañados, M., Henneaux, M., Teitelboim, C., Zanelli, J.: Geometry of the (2+1) black hole. Phys. Rev. D 48, 1506–1525 (1993). arXiv:gr-qc/9302012

  165. Cardy, J.L.: Operator content of two-dimensional conformally invariant theories. Nucl. Phys. B270, 186–204 (1986)

    ADS  MathSciNet  MATH  Google Scholar 

  166. Bloete, H.W.J., Cardy, J.L., Nightingale, M.P.: Conformal invariance, the central charge, and universal finite size amplitudes at criticality. Phys. Rev. Lett. 56, 742–745 (1986)

    ADS  Google Scholar 

  167. Strominger, A.: Black hole entropy from near-horizon microstates. JHEP 02, 009 (1998). arXiv:hep-th/9712251

  168. Carlip, S.: Black hole entropy from conformal field theory in any dimension. Phys. Rev. Lett. 82, 2828–2831 (1999). arXiv:hep-th/9812013

  169. ’t Hooft, G.: Dimensional reduction in quantum gravity. Salamfest 0284-296 (1993). arXiv:gr-qc/9310026

  170. Susskind, L.: Some speculations about black hole entropy in string theory. In Teitelboim, C. (ed.) The Black Hole, pp. 118–131. arXiv:hep-th/9309145

  171. Susskind, L., Uglum, J.: Black hole entropy in canonical quantum gravity and superstring theory. Phys. Rev. D50, 2700–2711 (1994). arXiv:hep-th/9401070

  172. Sen, A.: Extremal black holes and elementary string states. Mod. Phys. Lett. A10, 2081–2094 (1995). arXiv:hep-th/9504147

  173. Strominger., Vafa, C.: Microscopic origin of the bekenstein-hawking entropy. Phys. Lett. B379, 99–104 (1996). arXiv:hep-th/9601029

  174. Maldacena, J.M., Strominger, A.: Statistical entropy of four-dimensional extremal black holes. Phys. Rev. Lett. 77, 428–429 (1996). arXiv:hep-th/9603060

  175. Callan C.G., Maldacena, J.M.: D-brane approach to black hole quantum mechanics. Nucl. Phys. B472, 591–610 (1996). arXiv:hep-th/9602043

  176. Horowitz, G.T., Strominger, A.: Counting states of near extremal black holes. Phys. Rev. Lett. 77, 2368–2371 (1996). arXiv:hep-th/9602051

  177. Emparan, R., Horowitz, G.T.: Microstates of a neutral black hole in M Theory. Phys. Rev. Lett. 97, 141601 (2006). arXiv:hep-th/0607023

  178. Skenderis, K.: Black holes and branes in string theory. Lect. Notes Phys. 541, 325–364 (2000). arXiv:hep-th/9901050

  179. Peet, A.W.: TASI lectures on black holes in string theory. arXiv:hep-th/0008241

  180. Horowitz, G.T., Roberts, M.M.: Counting the microstates of a Kerr Black Hole. Phys. Rev. Lett. 99, 221601 (2007). arXiv:0708.1346

  181. Susskind, L.: The World as a hologram. J. Math. Phys. 36, 6377–6396 (1995). arXiv:hep-th/9409089

  182. Fischler, W., Susskind, L.: Holography and cosmology. arXiv:hep-th/9806039

  183. Easther, R., Lowe, D.A.: Holography, cosmology and the second law of thermodynamics. Phys. Rev. Lett. 82, 4967–4970 (1999). arXiv:hep-th/9902088

  184. Bousso, R.: A covariant entropy conjecture. JHEP 9907, 004, (1999). arXiv:hep-th/9905177

  185. Bousso, R.: The holographic principle. Rev. Mod. Phys. 74, 825–874 (2002). arXiv:hep-th/0203101

  186. Klebanov, I.R. : World volume approach to absorption by nondilatonic branes, Nucl. Phys. B 496, 231–242 (1997). arXiv:hep-th/9702076

  187. Gubser, S.S., Klebanov, I.R., Tseytlin, A.A.: String theory and classical absorption by three-branes. Nucl. Phys. B499, 217–240 (1997). arXiv:hep-th/9703040

  188. Gubser, S.S., Klebanov, I.R.: Absorption by branes and Schwinger terms in the world volume theory. Phys. Lett. B413, 41–48 (1997). arXiv:hep-th/9708005

  189. Witten, E.: Bound states of strings and p-branes. Nucl. Phys. B 460, 335–350 (1996). arXiv:hep-th/9510135

  190. Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998). arXiv:hep-th/9711200

  191. Beisert, N., Ahn, L., Alday, C., Bajnok, Z., Drummond, J.M. et al.: Review of AdS/CFT Integrability: An Overview. Lett. Math. Phys. 99, 3–32 (2012). arXiv:1012.3982

  192. Witten, E.: Anti-de sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 2, 505–532 (1998). arXiv:hep-th/9803131

  193. Birmingham, D., Sachs, I., Sen, S.: Entropy of three-dimensional black holes in string theory. Phys. Lett. B 424, 275–280 (1998). arXiv:hep-th/9801019

  194. Mathur, S.D.: The Information paradox: a pedagogical introduction. Class. Quant. Grav. 26, 224001, (2009). arXiv:0909.1038

  195. Polchinski, J,. Strassler, M.J.: The String dual of a confining four-dimensional gauge theory. arXiv:hep-th/0003136

  196. Strominger, A.: The dS/CFT correspondence. JHEP 0110 034 (2001). arXiv:hep-th/0106113

  197. Strominger, A.: Inflation and the dS/CFT correspondence. JHEP 0111 049 (2001). arXiv:hep-th/0110087

  198. Klebanov I., Polyakov, A.: AdS dual of the critical O(N) vector model. Phys. Lett. B 550, 213–219 (2002). arXiv:hep-th/0210114

  199. Maldacena, J.M.: Non-Gaussian features of primordial fluctuations in single field inflationary models. JHEP 0305, 013 (2003). arXiv:astro-ph/0210603

  200. Larsen, F.: van der Schaar, J.P., Leigh, R.G.: De sitter holography and the cosmic microwave background. JHEP 0204, 047 (2002). http://www.arXiv.org/abs/hep-th/0202127

  201. Larsen, F., McNees, R.: Inflation and de sitter holography. JHEP 0307, 051 (2003). hep-th/0307026

  202. Jacobson, T.: Thermodynamics of space-time: the Einstein equation of state, Phys. Rev. Lett. 75, 1260–1263 (1995). gr-qc/9504004

  203. Padmanabhan, T.: Thermodynamical aspects of gravity: new insights, Rept. Prog. Phys. 73, 046901 (2010). 0911.5004

  204. Verlinde, E.P.: On the origin of gravity and the laws of Newton. JHEP 1104 (2011) 029. arXiv:1001.0785

  205. Policastro, G., Son, D., Starinets, A.: The shear viscosity of strongly coupled N=4 supersymmetric Yang-Mills plasma. Phys. Rev. Lett. 87, 081601 (2001). hep-th/0104066

  206. Kovtun, P., Son, D.T., Starinets, A.O.: Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 94 (2005) 111601. arXiv:hep-th/0405231

  207. Romatschke, P., Romatschke, U.: Viscosity information from relativistic nuclear collisions: how perfect is the fluid observed at RHIC? Phys. Rev. Lett. 99, 172301 (2007). arXiv:0706.1522

  208. Hwa, R.C., Wang, X.N.: Quark-gluon Plasma 4. World Scientific Publishing, Singapore (2010). arXiv:0905.2433

  209. Casalderrey-Solana, J., Liu, H., Mateos, D., Rajagopal, K., Wiedemann, U.A.: Gauge/string duality, hot QCD and heavy ion collisions. Cambridge University Press, Cambridge (2014). http://books.google.com/books?id=WDeNAwAAQBAJ, arXiv:1101.0618

  210. Shuryak, E.: Toward the AdS/CFT dual of the ‘Little Bang’. J. Phys. G 39, 054001 (2012). arXiv:1112.2573

  211. DeWolfe, O., Gubser, S.S., Rosen, C., Teaney, D.: Heavy ions and string theory. Prog. Part. Nucl. Phys. 75, 86–132 (2014). arXiv:1304.7794

  212. T. Damour, Quelques propriétés, méchaniques, électromagnéiques, thermodynamiques et quantiques des trous noirs. Ph.D. thesis, Université Pierre et Marie Curie, Paris, 1979.

    Google Scholar 

  213. Son, D.T.: Toward an AdS/cold atoms correspondence: a geometric realization of the schroedinger symmetry, Phys. Rev. D78, 046003 (2008). arXiv:0804.3972

  214. Balasubramanian K., McGreevy, J.: Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101, 061601 (2008). arXiv:0804.4053

  215. Adams, A., Balasubramanian, K., McGreevy, J.: Hot spacetimes for cold Atoms, JHEP 11, 059 (2008). arXiv:0807.1111

  216. Kachru, S., Liu, X., Mulligan, M.: Gravity duals of lifshitz-like fixed points, Phys. Rev. D78, 106005 (2008). arXiv:0808.1725

  217. Gubser, S.S.: Breaking an abelian gauge symmetry near a black hole horizon, Phys. Rev. D78, 065034 (2008). arXiv:0801.2977

  218. Hartnoll, S.A., Herzog, C.P., Horowitz, G.T.: Building a holographic superconductor, Phys. Rev. Lett. 101, 031601 (2008). arXiv:0803.3295

  219. Hartnoll, S.A., Herzog, C.P., Horowitz, G.T.: Holographic superconductors, JHEP 0812, 015 (2008). arXiv:0810.1563

  220. Hartnoll, S.A., Polchinski, J., Silverstein, E., Tong, D.: Towards strange metallic holography, JHEP 1004, 120 (2010). arXiv:0912.1061

  221. Liu, H., McGreevy, J., Vegh, D.: Non-Fermi liquids from holography, Phys. Rev. D83, 065029 (2011). arXiv:0903.2477

  222. Faulkner, T., Iqbal, N., Liu, H., McGreevy, J., Vegh, D.: Strange metal transport realized by gauge/gravity duality. Science 329, 1043–1047 (2010)

    ADS  Google Scholar 

  223. Faulkner, T., Iqbal, N., Liu, H., McGreevy, J., Vegh, D.: Holographic non-Fermi liquid fixed points. Philos. Trans. Roy. Soc. A369, 1640 (2011). arXiv:1101.0597

  224. Iqbal, N., Liu, H.: Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm. Phys. Rev. D79, 025023 (2009). arXiv:0809.3808

  225. Bredberg, I., Keeler, C., Lysov, V., Strominger, A.: Wilsonian approach to fluid/gravity duality. JHEP 1103, 141 (2011). arXiv:1006.1902

  226. Compere, G., McFadden, P., Skenderis, K., Taylor, M.: The holographic fluid dual to vacuum Einstein gravity. JHEP 1107, 050 (2011). arXiv:1103.3022

  227. Bredberg, I., Keeler, C., Lysov, V., Strominger, A.: From Navier-Stokes to Einstein. JHEP 1207, 146 (2012). arXiv:1101.2451

  228. Compere, G., McFadden, P., Skenderis, K., Taylor, M.: The relativistic fluid dual to vacuum Einstein gravity. JHEP 1203, 076 (2012). arXiv:1201.2678

  229. Thorne, K.S., Price, R., Macdonald, D.: Black holes: The Membrane Paradigm, p. 367. Yale University Press, USA (1986)

    Google Scholar 

  230. McGreevy, J.: Holographic duality with a view toward many-body physics. Adv. High Energy Phys. 2010, 723105 (2010). arXiv:0909.0518

  231. Sachdev, S.: Strange metals and the AdS/CFT correspondence, J. Stat. Mech. 1011, P11022 (2010). arXiv:1010.0682

  232. Horowitz, G.T.: Black Holes in Higher Dimensions. Cambridge University Press (2012). http://books.google.com/books?id=12eGVHojt2UC, arXiv:1106.4324

  233. Sachdev, S.: What can gauge-gravity duality teach us about condensed matter physics? Ann. Rev. Condensed Matter Phys. 3, 9–33 (2012). arXiv:1108.1197

  234. Iqbal, N., Liu, H., Mezei, M.: TASI 2010 From meV to the Planck Scale. World Scientific (2012). arXiv:1110.3814

  235. Son, D.T.: Holography for strongly coupled media. Lect. Notes Phys. 851, 147–163 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  236. Grumiller, D., Johansson,N.: Instability in cosmological topologically massive gravity at the chiral point, JHEP 07, 134 (2008). arXiv:0805.2610

  237. Flohr, M.: Bits and pieces in logarithmic conformal field theory, Int. J. Mod. Phys. A18, 4497–4592 (2003). arXiv:hep-th/0111228

  238. Gaberdiel, M.R.: An algebraic approach to logarithmic conformal field theory, Int. J. Mod. Phys. A18, 4593–4638 (2003). arXiv:hep-th/0111260

  239. Cardy, J,. et al..: Logarithmic conformal field theories, J. Phys. A46, special issue (2013). Gainutdinov, A., Ridout D., Runkel, I. (eds.) Logarithmic conformal field theories

    Google Scholar 

  240. Grumiller, D., Riedler, W., Rosseel, J., Zojer, T.: Holographic applications of logarithmic conformal field theories, J. Phys. A: Math. Theor. 46, 494002 (2013). arXiv:1302.0280

  241. Burgess, C.P., Myers, Robert C.: General relativity and relativistic astrophysics. In Burgess, C.P. (ed.) Proceedings: 8th Canadian Conference, Montreal, Canada, 10–12 June 1999. http://www.arXiv.org/abs/hep-th/9901079

  242. Polchinski, J.: S matrices from AdS space-time. arXiv:hep-th/9901076

  243. Giddings, S.B.: Flat space scattering and bulk locality in the AdS/CFT correspondence, Phys. Rev. D61, 106008 (2000). arXiv:hep-th/9907129

  244. Gary, M., Giddings, S.B., Penedones, J.: Local bulk S-matrix elements and CFT singularities, Phys. Rev. D80, 085005 (2009). arXiv:0903.4437

  245. Gary, M., Giddings, S.B.: The flat space S-matrix from the AdS/CFT correspondence? Phys. Rev. D80, 046008 (2009). arXiv:0904.3544

  246. Barnich, G., Compere, G.: Classical central extension for asymptotic symmetries at null infinity in three spacetime dimensions, Class. Quant. Grav. 24, F15–F23 (2007). arXiv:gr-qc/0610130

  247. Bondi, H., van der Burg, M., Metzner, A.: Gravitational waves in general relativity vii. waves from axi-symmetric isolated systems. Proc. R. Soc. London A269, 21–51 (1962)

    ADS  MathSciNet  MATH  Google Scholar 

  248. Sachs, R.: Asymptotic symmetries in gravitational theory. Phys. Rev. 128, 2851–2864 (1962)

    ADS  MathSciNet  MATH  Google Scholar 

  249. Bagchi, A., Gopakumar, R.: Galilean conformal algebras and AdS/CFT, JHEP 0907, 037 (2009). arXiv:0902.1385

  250. Bagchi, A., Gopakumar, R., Mandal, I., Miwa, A.: GCA in 2d, JHEP 1008, 004 (2010). arXiv:0912.1090

  251. Bagchi, A.: Correspondence between asymptotically flat spacetimes and nonrelativistic conformal field theories. Phys. Rev. Lett. 105, 171601 (2010)

    ADS  MathSciNet  Google Scholar 

  252. Bagchi, A., Detournay, S., Grumiller, D.: Flat-space chiral gravity, Phys. Rev. Lett. 109, 151301 (2012). arXiv:1208.1658

  253. Witten, E.: Three-Dimensional Gravity Revisited. arXiv:0706.3359

  254. Li, W., Song, W., Strominger, A.: Chiral gravity in three dimensions, JHEP 04, 082 (2008). arXiv:0801.4566

  255. Maloney, A., Song, W., Strominger, A.: Chiral gravity, log gravity and extremal CFT, Phys. Rev. D81, 064007 (2010). arXiv:0903.4573

  256. Cornalba, L., Costa, M.S.: A New cosmological scenario in string theory, Phys. Rev. D66, 066001 (2002). arXiv:hep-th/0203031

  257. Cornalba, L., Costa, M.S.: Time dependent orbifolds and string cosmology, Fortsch. Phys. 52, 145–199 (2004). arXiv:hep-th/0310099

  258. Barnich, G.: Entropy of three-dimensional asymptotically flat cosmological solutions, JHEP 1210, 095 (2012). arXiv:1208.4371

  259. Bagchi, A., Detournay, S., Fareghbal, R., Simon, J.: Holography of 3d flat cosmological horizons, Phys. Rev. Lett. 110, 141302 (2013). arXiv:1208.4372

  260. Bagchi, A., Detournay, S., Grumiller, D., Simon, J.: Cosmic evolution from phase transition of 3-dimensional flat space, Phys. Rev. Lett. 111, 181301 (2013). arXiv:1305.2919

  261. Barnich, G., Troessaert, C.: Aspects of the BMS/CFT correspondence, JHEP 1005, 062 (2010). arXiv:1001.1541

  262. Barnich, G., Troessaert, C.: BMS charge algebra, JHEP 1112, 105 (2011). arXiv:1106.0213

  263. Barnich, G., Gomberoff, A., Gonzalez, H.A.: The Flat limit of three dimensional asymptotically anti-de sitter spacetimes, Phys. Rev. D86, 024020 (2012). arXiv:1204.3288

  264. Barnich, G., Gomberoff, A., Gonzalez, H.A.: BMS\(_3\) invariant two dimensional field theories as flat limit of liouville, Phys. Rev. D87, 124032 (2013). arXiv.:1210.0731

    Google Scholar 

  265. Bagchi, A., Fareghbal, R.: BMS/GCA redux: towards flatspace holography from non-relativistic symmetries, JHEP 1210, 092 (2012). arXiv:203.5795

    Google Scholar 

  266. Barnich, G., Gonzalez, H.A.: Dual dynamics of three dimensional asymptotically flat Einstein gravity at null infinity, JHEP 1305, 016 (2013). arXiv:1303.1075

  267. Barnich, G., Troessaert, C.: Comments on holographic current algebras and asymptotically flat four dimensional spacetimes at null infinity, JHEP 1311, 003 (2013). arXiv:1309.0794

  268. Bagchi, A., Basu, R.: 3D flat holography: entropy and logarithmic corrections. (2013). arXiv:1312.5748

  269. Costa, R.N.C.: Aspects of the zero \(\Lambda \) limit in the AdS/CFT correspondence. arXiv:1311.7339

  270. Fradkin, E., Vasiliev, M.A.: Cubic interaction in extended theories of massless higher spin fields. Nucl. Phys. B291, 141 (1987)

    ADS  MathSciNet  Google Scholar 

  271. Fradkin, E., Vasiliev, M.A.: On the gravitational interaction of massless higher spin fields. Phys. Lett. B189, 89–95 (1987)

    ADS  MathSciNet  MATH  Google Scholar 

  272. Vasiliev, M.A.: Consistent equation for interacting gauge fields of all spins in (3+1)-dimensions. Phys. Lett. B243, 378–382 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  273. Vasiliev, M.: Nonlinear equations for symmetric massless higher spin fields in (A)dS(d), Phys. Lett. B567, 139–151 (2003). arXiv:hep-th/0304049

  274. Giombi, S., Yin, X.: Higher spin gauge theory and holography: the three-point functions, JHEP 1009, 115 (2010). arXiv:0912.3462

  275. Giombi, S., Yin, X.: Higher spins in AdS and twistorial holography, JHEP 1104, 086 (2011). arXiv:1004.3736

  276. Koch, R.d.M., Jevicki, A., Jin, K., Rodrigues, J.P.: \(AdS_4/CFT_3\) construction from collective fields, Phys. Rev. D83, 025006 (2011). arXiv:1008.0633

  277. Giombi, S., Yin, X.: On higher spin gauge theory and the critical O(N) model, Phys. Rev. D85, 086005 (2012). arXiv.org/abs/1105.4011

    Google Scholar 

  278. Gaberdiel, M.R., Gopakumar, R.: An AdS\(_3\) dual for minimal model CFTs, Phys. Rev. D83, 066007 (2011). arXiv:1011.2986

  279. Gaberdiel, M.R., Gopakumar, R., Hartman, T., Raju, S.: Partition functions of holographic minimal models”, JHEP 1108, 077 (2011). arXiv:1106.1897

  280. Gaberdiel, M.R., Gopakumar, R.: Minimal model holography, J. Phys. A46, 214002 (2013). arXiv:1207.6697

  281. Henneaux, M., Rey, S.-J.: Nonlinear \(W_{infinity}\) as asymptotic symmetry of three-dimensional higher spin anti-de sitter gravity, JHEP 1012, 007 (2010). arXiv:1008.4579

  282. Campoleoni, A., Fredenhagen, S., Pfenninger, S., Theisen, S.: Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 1011, 007 (2010). arXiv:1008.4744

  283. Fotopoulos, A., Tsulaia, M.: Gauge invariant lagrangians for free and interacting higher spin fields. a review of the brst formulation, Int. J. Mod. Phys. A24, 1–60 (2009). arXiv:0805.1346

  284. Sagnotti, A., Taronna, M.: String lessons for higher-spin interactions, Nucl. Phys. B842, 299–361 (2011). arXiv:1006.5242

  285. Bekaert, X., Boulanger, N., Sundell, P.: How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples, Rev. Mod. Phys. 84, 987–1009 (2012). arXiv:1007.0435

  286. Campoleoni, A., Fredenhagen, S., Pfenninger, S.: Asymptotic W-symmetries in three-dimensional higher-spin gauge theories, JHEP 1109, 113 (2011). arXiv:1107.0290

  287. Ammon, M., Gutperle, M., Kraus, P., Perlmutter, E.: Spacetime geometry in higher spin gravity. J. High Energy Phys. 2011(10) (2011). doi:10.1007/JHEP10(2011)053, arXiv:1106.4788

  288. Anninos, D., Hartman, T., Strominger, A.: Higher spin realization of the dS/CFT correspondence. arXiv:1108.5735

  289. Maldacena, J., Zhiboedov, A.: Constraining conformal field theories with a higher spin symmetry. J. Phys. A46, 214011 (2013). arXiv:1112.1016

  290. Ammon, M., Gutperle, M., Kraus, P., Perlmutter, E.: Black holes in three dimensional higher spin gravity: A review, J. Phys. A46, 214001 (2013). arXiv:1208.5182

  291. Vasiliev, M.A.: Holography, unfolding and higher-spin theory, J. Phys. A46, 214013 (2013). arXiv:1203.5554

  292. Maldacena, J., Zhiboedov, A.: Constraining conformal field theories with a slightly broken higher spin symmetry, Class. Quant. Grav. 30, 104003 (2013). arXiv:1204.3882

  293. Afshar, H., Bagchi, A., Fareghbal, R., Grumiller, D., Rosseel, J.; Higher spin theory in 3-dimensional flat space, Phys. Rev. Lett. 111, 121603 (2013). arXiv:1307.4768

  294. Gonzalez, H.A., Matulich, J., Pino, M., Troncoso, R.: Asymptotically flat spacetimes in three-dimensional higher spin gravity, JHEP 1309 016, (2013). arXiv:1307.5651

  295. Gary, M., Grumiller, D., Rashkov, R.: Towards non-AdS holography in 3-dimensional higher spin gravity, JHEP 1203, 022 (2012). arXiv:1201.0013

  296. Nielsen, N., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  297. Sorkin, R.D.: On the entropy of the vacuum outside a horizon. arXiv:1402.3589

  298. Bombelli, L., Koul, R.K., Lee, J., Sorkin, R.D.: A quantum source of entropy for black holes. Phys. Rev. D34, 373–383 (1986)

    ADS  MathSciNet  MATH  Google Scholar 

  299. Srednicki, M.: Entropy and area. Phys. Rev. Lett. 71, 666–669 (1993). arXiv:hep-th/9303048

  300. Solodukhin, S.N.: Entanglement entropy of black holes. Living Rev. Rel. 14, 8 (2011). arXiv:1104.3712

  301. Vidal, G., Latorre, J., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena, Phys. Rev. Lett. 90, 227902 (2003). arXiv:quant-ph/0211074

  302. Calabrese, P., Cardy, J.L.: Entanglement entropy and quantum field theory, J. Stat. Mech. 0406, P06002 (2004). arXiv:hep-th/0405152

  303. Kitaev, A., Preskill, J.: Topological entanglement entropy. Phys. Rev. Lett. 96, 110404, (2006). arXiv:hep-th/0510092

  304. Levin, M., Wen, X.-G.: Detecting topological order in a ground state wave function. Phys. Rev. Lett. 96, 110405 (2006)

    ADS  Google Scholar 

  305. Ryu, S., Takayanagi, T.: Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96, 181602 (2006). arXiv:hep-th/0603001

  306. Ryu, S., Takayanagi, T.: Aspects of holographic entanglement entropy, JHEP 0608, 045, (2006). arXiv:hep-th/0605073

  307. Nishioka, T., Ryu, S., Takayanagi, T.: Holographic entanglement entropy: an overview, J. Phys. A42, 504008 (2009). arXiv:0905.0932

  308. Hayden, P., Preskill, J.: Black holes as mirrors: quantum information in random subsystems. JHEP 0709, 120 (2007). arXiv:0708.4025

  309. Harlow, D., Hayden, P.: Quantum vomputation versus firewalls. JHEP 1306 085, (2013). arXiv:1301.4504

  310. Aman, J.E., Bengtsson, I., Pidokrajt, N.: Geometry of black hole thermodynamics, Gen. Rel. Grav. 35, 1733 (2003). arXiv:gr-qc/0304015

  311. Arcioni, G., Lozano-Tellechea, E.: Stability and critical phenomena of black holes and black rings, Phys. Rev. D72, 104021 (2005). arXiv:hep-th/0412118

  312. Aman, J.E., Pidokrajt, N.: Geometry of higher-dimensional black hole thermodynamics, Phys. Rev. D73, 024017 (2006). arXiv:hep-th/0510139

  313. Shen, J.-Y., Cai, R.-G., Wang, B., Su, R.-K.: Thermodynamic geometry and critical behavior of black holes, Int. J. Mod. Phys. A22, 11–27, (2007). arXiv:gr-qc/0512035

  314. Sarkar, T., Sengupta, G., Tiwari, B.N: On the thermodynamic geometry of BTZ black holes, JHEP 0611, 015 (2006). arXiv:hep-th/0606084

  315. Alvarez, J.L., Quevedo, H., Sanchez, A.: Unified geometric description of black hole thermodynamics, Phys. Rev. D77, 084004 (2008). arXiv:0801.2279

  316. Ruppeiner, G.: Thermodynamic curvature and phase transitions in Kerr-Newman black holes, Phys. Rev. D78, 024016 (2008). arXiv:0802.1326

  317. Ruppeiner, G.: Thermodynamics: a riemannian geometric model. Phys. Rev. A20, 1608 (1979)

    ADS  Google Scholar 

  318. Ruppeiner, G.: Riemannian geometry in thermodynamic fluctuation theory, Rev. Mod. Phys. 67, 605–659 (1995)

    Google Scholar 

  319. Ruppeiner, G.: Erratum: riemannian geometry in thermodynamic fluctuation theory, Rev. Mod. Phys. 68,313 (1996)

    Google Scholar 

  320. Henneaux, M., Teitelboim, C.: The cosmological constant as a canonical variable. Phys. Lett. B143, 415–420 (1984)

    ADS  MathSciNet  Google Scholar 

  321. Henneaux, M., Teitelboim, C.: Asymptotically anti-de sitter spaces. Commun. Math. Phys. 98, 391–424 (1985)

    ADS  MathSciNet  MATH  Google Scholar 

  322. Brown, J.D., Teitelboim, C.: Dynamical neutralization of the cosmological constant. Phys. Lett. B195, 177–182 (1987)

    ADS  Google Scholar 

  323. Brown, J.D., Teitelboim, C.: Neutralization of the cosmological constant by membrane creation. Nucl. Phys. B297, 787–836 (1988)

    ADS  MathSciNet  Google Scholar 

  324. Bousso, R., Polchinski, J.: Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP 0006, 006 (2000). arXiv:hep-th/0004134

  325. Gomberoff, A., Henneaux, M., Teitelboim, C., Wilczek, F.: Thermal decay of the cosmological constant into black holes, Phys. Rev. D69, 083520 (2004). arXiv:hep-th/0311011

  326. Caldarelli, M.M., Cognola, G., Klemm, D.: Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories, Class. Quant. Grav. 17, 399–420 (2000). arXiv:hep-th/9908022

  327. Kastor, D., Ray, S., Traschen, J.: Enthalpy and the mechanics of AdS black holes, Class. Quant. Grav. 26, 195011 (2009). arXiv:0904.2765

  328. Cvetic, M., Gibbons, G., Kubiznak, D., Pope, C.: Black hole enthalpy and an entropy inequality for the thermodynamic volume, Phys. Rev. D84, 024037 (2011). arXiv:1012.2888

  329. Dolan, B.P.: The cosmological constant and black hole thermodynamic potentials, Class. Quant. Grav. 28, 125020 (2011). arXiv:1008.5023

  330. Dolan, B.P.: Pressure and volume in the first law of black hole thermodynamics, Class. Quant. Grav. 28, 235017 (2011). arXiv:1106.6260

  331. Kubiznak, D., Mann, R.B.: P-V criticality of charged AdS black holes, JHEP 1207, 033 (2012). arXiv:1205.0559

  332. Dolan, B.P.: The compressibility of rotating black holes in \(D\)-dimensions, Class. Quant. Grav. 31, 035022 (2014). arXiv:1308.5403

  333. Dolan, B.P., Kastor, D., Kubiznak, D., Mann, R.B., Traschen, J.: Thermodynamic volumes and Isoperimetric Inequalities for de Sitter Black Holes, Phys. Rev. D87, 104017, (2013). arXiv:1301.5926

  334. Altamirano, N., Kubiznak, D., Mann, R.B., Sherkatghanad, Z.: Thermodynamics of rotating black holes and black rings: phase transitions and thermodynamic volume. Galaxies. 2(4), 89–159 (2014). http://www.mdpi.com/2075-4434/2/1/89, arXiv:1401.2586

  335. Guica, M., Hartman, T., Song, W., Strominger, A.: The Kerr/CFT Correspondence, Phys. Rev. D80, 124008, (2009). arXiv:0809.4266

  336. Lu, H., Mei, J., Pope, C.: Kerr/CFT correspondence in diverse dimensions, JHEP 0904, 054 (2009). arXiv:0811.2225

  337. Azeyanagi, T., Ogawa, N., Terashima, S.: The Kerr/CFT correspondence and string theory, Phys. Rev. D79, 106009 (2009). arXiv:0812.4883

  338. Bredberg, I., Hartman, T., Song, W., Strominger, A.: Black hole superradiance from Kerr/CFT”, JHEP 1004, 019 (2010). arXiv:0907.3477

  339. Cvetic, M., Larsen, F.: Greybody factors and charges in Kerr/CFT, JHEP 0909, 088 (2009). arXiv:0908.1136

  340. Castro, A., Larsen, F.: Near extremal kerr entropy from AdS(2) quantum gravity, JHEP 0912, 037 (2009). arXiv:0908.1121

  341. Dias, O.J., Reall, H.S., Santos, J.E.: Kerr-CFT and gravitational perturbations, JHEP 0908, 101 (2009). arXiv:0906.2380

  342. Amsel, A.J., Horowitz, G.T., Marolf, D., Roberts, M.M.: No dynamics in the extremal Kerr Throat. (2009). arXiv:0906.2376

  343. Castro, A., Maloney, A., Strominger, A.: Hidden conformal symmetry of the Kerr Black Hole, Phys. Rev. D82, 024008 (2010). arXiv:1004.0996

  344. Guica, M., Strominger, A.: Microscopic realization of the Kerr/CFT correspondence, JHEP 1102, 010 (2011). arXiv:1009.5039

  345. Compere, G.: The Kerr/CFT correspondence and its extensions: a comprehensive review, Living Rev. Rel. 15 11 (2012). arXiv:1203.3561

  346. Bardeen, J.M., Horowitz, G.T.: The extreme Kerr throat geometry: a vacuum analog of AdS(2) \(\times \) S(2), Phys. Rev. D60, 104030 (1999) Xiv:hep-th/9905099

    Google Scholar 

  347. Thorne, K.S.: Disk accretion onto a black hole. 2. Evolution of the hole. Astrophys. J. 191, 507 (1974)

    ADS  Google Scholar 

  348. McClintock, J.E., Shafee, R., Narayan, R., Remillard, R.A., Davis, S.W. et al.: The spin of the near-extreme kerr black hole GRS 1915+105, Astrophys. J. 652, 518–539 (2006). arXiv:astro-ph/0606076

  349. McClintock, J.E., Remillard, R.A.: Measuring the spins of stellar-mass black holes. In: Astro2010: The Astronomy and Astrophysics Decadal Survey, vol. 2010, p. 197 (2009). http://adsabs.harvard.edu/abs/2009astro2010S.197M, arXiv:0902.3488

  350. Fender, R., Gallo, E., Russell, D.: No evidence for black hole spin powering of jets in X-ray binaries, Mon. Not. R. Astron. Soc. 406, 1425–1434 (2010). arXiv:1003.5516

  351. Lunin, O., Mathur, S.D.: AdS / CFT duality and the black hole information paradox, Nucl. Phys. B623, 342–394 (2002). arXiv:hep-th/0109154

  352. Lin, H., Lunin, O., Maldacena, J.M.: Bubbling AdS space and 1/2 BPS geometries, JHEP 10, 025 (2004) arxiv:hep-th/0409174

    Google Scholar 

  353. Grant, L., Maoz, L., Marsano, J., Papadodimas, K., Rychkov, V.S.: Minisuperspace quantization of ’bubbling AdS’ and free fermion droplets,JHEP 08, 025, (2005). arxiv:hep-th/0505079

    Google Scholar 

  354. Mathur, S.D.: The fuzzball proposal for black holes: an Elementary review, Fortsch. Phys. 53, 793–827, (2005). arXiv:hep-th/0502050

  355. Bena, I., Warner, N.P.: Black holes, black rings and their microstates, Lect. Notes Phys. 755, 1–92, (2008). arXiv:hep-th/0701216

  356. Skenderis, K., Taylor, M.: The fuzzball proposal for black holes, Phys. Rept. 467, 117–171 (2008). arXiv:0804.0552

  357. Mathur, S.D.: Fuzzballs and the information paradox: a summary and conjectures. arXiv:0810.4525

  358. Almheiri, A., Marolf, D., Polchinski, J,. Sully, J.: Black holes: complementarity or firewalls?”. JHEP 1302 (2013) 062. arXiv:1207.3123; cf. Braunstein, S. L..: Black hole entropy as entropy of entanglement, or it’s curtains for the equivalence principle. arXiv:0907.1190 published as Braunstein, S.L., Pirandola, S., Zyczkowski, K..: Better late than never: information retrieval from black holes. Phys. Rev. Lett. 110 (2013) 101301 for a similar prediction from different assumptions

  359. Almheiri, A., Marolf, D., Polchinski, J., Stanford, D., Sully, J.: An apologia for firewalls. JHEP 1309, 018 (2013). arXiv:1304.6483

  360. Marolf D., Polchinski, J.: Gauge/gravity duality and the black hole Interior, Phys. Rev. Lett. 111, 171301 (2013). arXiv:1307.4706

  361. Carlip, S.: Logarithmic corrections to black hole entropy from the Cardy formula, Class. Quant. Grav. 17, 4175–4186 (2000). arXiv:gr-qc/0005017

  362. Sen, A.: Logarithmic corrections to Schwarzschild and other non-extremal black hole entropy in different dimensions, JHEP 1304, 156, (2013). arXiv:1205.0971

  363. Kaul, R.K., Majumdar, P.: Quantum black hole entropy, Phys. Lett. B439, 267–270 (1998). arXiv:gr-qc/9801080

  364. Kaul, R.K., Majumdar, P., Logarithmic correction to the bekenstein-hawking entropy, Phys. Rev. Lett. 84, 5255–5257, (2000). arXiv:gr-qc/0002040

  365. Watson, T.: I think there is a world market for maybe five computers. (president of IBM), (1943)

    Google Scholar 

  366. Wheeler, J.: Everything is information or “It from bit” was a slogan that replaced Wheeler’s earlier belief everything is geometry. Indeed, taking geometry too seriously can be misleading in the context of quantum gravity. (1990)

    Google Scholar 

  367. Maldacena, J., Susskind, L., Cool horizons for entangled black holes, Fortsch. Phys. 61, 781–811 (2013). arXiv:1306.0533

Download references

Acknowledgments

DG and RM thank their respective collaborators for numerous discussions on black hole thermodynamics in the past 15 years. DG and JS were supported by the START project Y 435-N16 of the Austrian Science Fund (FWF) and the FWF projects I 952-N16 and I 1030-N27.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Grumiller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grumiller, D., McNees, R., Salzer, J. (2015). Black Holes and Thermodynamics: The First Half Century. In: Calmet, X. (eds) Quantum Aspects of Black Holes. Fundamental Theories of Physics, vol 178. Springer, Cham. https://doi.org/10.1007/978-3-319-10852-0_2

Download citation

Publish with us

Policies and ethics