Skip to main content
Log in

A gravitational non-radiative memory effect

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We revisit the issue of memory effects, i.e. effects giving rise to a net cumulative change of the configuration of test particles, using a toy model describing the emission of radiation by a compact source and focusing on the scalar, hence non-radiative, part of the Riemann curvature. Motivated by the well known fact that gravitational radiation is accompanied by a memory effect, i.e. a permanent displacement of the relative separation of test particles, present after radiation has passed, we investigate the existence of an analog effect in the non-radiative part of the gravitational field. While quadrupole and higher multipoles undergo oscillations responsible for gravitational radiation, energy, momentum and angular momentum are conserved charges undergoing non-oscillatory change due to radiation emission. We show how the source re-arrangement due to radiation emission produce time-dependent scalar potentials which induce a time variation in the scalar part of the Riemann curvature tensor. As a result, on general grounds a velocity memory effect appears, depending on the inverse of the square of the distance of the observer from the source, thus making it almost impossible to observe, as shown by comparison to the planned gravitational detector noise spectral densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Whether this neutrino radiation is actually of memory or tail type is discussed in ch. 10.5.4 of [13], where it is shown that on a very long time scale \(t\gg r\) the GW amplitude decays, thus not leaving a permanent displacement characteristic of a memory term. However the such test-particle displacement after the passage of the GWs, even it not permanent, is present for \(t > rsim r\), hence it can well be seen as “permanent” on the human observation time scale when r is an astronomical scale.

  2. A term proportional to a \(\delta \)-function in the Riemann tensor does not generate a displacement memory effect that would instead require a \({{\dot{\delta }}}(t-r)/r\) term in the Riemann, denoting time derivative with an overdot.

  3. A similar setup was studied in [19] where a potential analog to our \(\psi _e\) was erroneously found to be time-independent, by first assuming that \(t/r\ll 1\) and then taking the limit \(t\rightarrow \infty \), see Eqs. (21), (24) and (25) there.

  4. The single-sided noise spectral density is defined in terms of the average of the Fourier transform of the dimension-less strains \({\tilde{n}}(f)\) via \(\langle {\tilde{n}}(f){\tilde{n}}^*(f')\rangle =\frac{1}{2}S_n(f)\delta (f-f')\).

References

  1. Abbott, B., et al.: Phys. Rev. X 9(3), 031040 (2019). https://doi.org/10.1103/PhysRevX.9.031040

    Article  Google Scholar 

  2. R. Abbott et al. (2020)

  3. Zel’dovich, Y.B., Polnarev, A.G.: Sov. Ast. 18, 17 (1974)

    ADS  Google Scholar 

  4. Braginsky, V.B., Grishchuk, L.P.: Sov. Phys. JETP 62, 427 (1985)

    Google Scholar 

  5. Thorne, K.S.: Phys. Rev. D 45(2), 520 (1992). https://doi.org/10.1103/PhysRevD.45.520

    Article  ADS  MathSciNet  Google Scholar 

  6. Wiseman, A.G., Will, C.M.: Phys. Rev. D 44(10), R2945 (1991). https://doi.org/10.1103/PhysRevD.44.R2945

    Article  ADS  Google Scholar 

  7. Christodoulou, D.: Phys. Rev. Lett. 67, 1486 (1991). https://doi.org/10.1103/PhysRevLett.67.1486

    Article  ADS  MathSciNet  Google Scholar 

  8. Epstein, R.: Astrophys. J. 223, 1037 (1978). https://doi.org/10.1086/156337

    Article  ADS  Google Scholar 

  9. Turner, M.S.: Nature 274, 565 (1978). https://doi.org/10.1038/274565a0

    Article  ADS  Google Scholar 

  10. Mueller, E., Janka, H.T.: Astron. Astrophys. 317, 140 (1997)

    ADS  Google Scholar 

  11. Blanchet, L., Damour, T.: Phys. Rev. D 37, 1410 (1988). https://doi.org/10.1103/PhysRevD.37.1410

    Article  ADS  Google Scholar 

  12. Blanchet, L., Damour, T.: Phys. Rev. D 46, 4304 (1992). https://doi.org/10.1103/PhysRevD.46.4304

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Maggiore, Gravitational Waves: Volume 1: Theory and Experiments. Gravitational Waves (OUP Oxford, 2008). https://books.google.com.br/books?id=AqVpQgAACAAJ

  14. Tolish, A., Wald, R.M.: Phys. Rev. D 89(6), 064008 (2014). https://doi.org/10.1103/PhysRevX.9.0310400

    Article  ADS  Google Scholar 

  15. Tolish, A., Bieri, L., Garfinkle, D., Wald, R.M.: Phys. Rev. D 90(4), 044060 (2014). https://doi.org/10.1103/PhysRevX.9.0310401

    Article  ADS  Google Scholar 

  16. Zhang, P.M., Duval, C., Gibbons, G., Horvathy, P.: Phys. Lett. B 772, 743 (2017). https://doi.org/10.1103/PhysRevX.9.0310402

    Article  ADS  MathSciNet  Google Scholar 

  17. Zhang, P., Duval, C., Gibbons, G., Horvathy, P.: JCAP 05, 030 (2018). https://doi.org/10.1103/PhysRevX.9.0310403

    Article  ADS  Google Scholar 

  18. Flanagan, E.E., Hughes, S.A.: New J. Phys. 7, 204 (2005). https://doi.org/10.1103/PhysRevX.9.0310404

    Article  ADS  Google Scholar 

  19. Garfinkle, D., Raácz, I.: Gen. Relativ. Gravit. 47(7), 79 (2015). https://doi.org/10.1103/PhysRevX.9.0310405

    Article  ADS  Google Scholar 

  20. Moore, C., Cole, R., Berry, C.: Class. Quant. Grav. 32(1), 015014 (2015). https://doi.org/10.1103/PhysRevX.9.0310406

    Article  ADS  Google Scholar 

  21. study team, L.S.: Lisa science requirements document. Technical report, ESA (2018). https://www.cosmos.esa.int/web/lisa/lisa-documents. Accessed on Aug 27th, 2020

  22. Kawamura, S., et al.: Class. Quant. Grav. 28, 094011 (2011). https://doi.org/10.1103/PhysRevX.9.0310408

    Article  ADS  Google Scholar 

  23. Cutler, C., Holz, D.E.: Phys. Rev. D 80, 104009 (2009). https://doi.org/10.1103/PhysRevX.9.0310409

    Article  ADS  Google Scholar 

  24. Hild, S., et al.: Class. Quant. Grav. 28(9), 094013 (2011). https://doi.org/10.1088/0264-9381/28/9/094013

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wishes to thank Jan Harms and Robert Wald for discussions. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001. The work of RS is partially supported by CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Sturani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Einstein equations in the SVT decomposition

Defining \(\psi _e\equiv \psi +1/6\nabla ^2 e\) and \(V_i\equiv \beta _i-1/2\dot{F}_i\), one has for the Christoffel coefficients

$$\begin{aligned} \begin{array}{rcl} \varGamma ^0_{00}&{}=&{}{{\dot{\phi }}}\,,\\ \varGamma ^0_{0i}&{}=&{}\phi _{,i}\,,\\ \varGamma ^0_{ij}&{}=&{}\displaystyle -\delta _{ij}{{\dot{\psi }}}_e+\frac{1}{2}\dot{e}_{,ij}-b_{,ij} -\frac{1}{2}\left( V_{i,j}+V_{j,i}\right) +\frac{1}{2} \dot{h}^{TT}_{ji}\,,\\ \varGamma ^k_{00}&{}=&{}\displaystyle \delta ^{km}\left( \phi _{,m}+\dot{b}_{,m}+{{\dot{\beta }}}_m\right) \,,\\ \varGamma ^k_{0i}&{}=&{}\displaystyle -\delta ^k_i{{\dot{\psi }}}_e+\frac{1}{2}\delta ^{km}\dot{e}_{,im} +\frac{1}{2}\left( V_{k,i}-V_{i,k}\right) +\frac{1}{2}\delta ^{km}\dot{h}^{TT}_{mi}\,,\\ \varGamma ^k_{ij}&{}=&{}\displaystyle \delta ^{km}\delta _{ij}\psi _{e,m}-\delta ^k_i\psi _{e,j} -\delta ^k_j\psi _{e,i}+\frac{1}{2}\delta ^{kl}e_{,ijk} \\ &{}&{}+\frac{1}{2}\delta ^{km}F_{l,im}+\frac{1}{2}\delta ^{km}\left( h^{TT}_{im,j}+h^{TT}_{jm,i}-h^{TT}_{ij,m}\right) . \end{array} \end{aligned}$$
(21)

and for Riemann tensor components

$$\begin{aligned} \begin{array}{rcl} R^0_{\ i0j}&{}=&{}\displaystyle -\delta _{ij}\ddot{\psi }_e-\left( \phi +\dot{b}-\frac{1}{2}\ddot{e}\right) _{,ij} -\frac{1}{2}\left( \dot{V}_{i,j}+\dot{V}_{j,i}\right) +\frac{1}{2}\ddot{h}^{TT}_{ij}\,,\\ R^k_{\ ilj}&{}=&{}\displaystyle \delta ^{km}\left( \delta _{ij}\psi _{e,ml}-\delta _{il}\psi _{e,mj}\right) +\delta ^k_l\psi _{e,ij}-\delta ^k_j\psi _{e,il} \\ &{}&{}+\frac{1}{2} \delta ^{km}\left( h^{TT}_{jm,il}+h^{TT}_{il,jm}-h^{TT}_{ij,lm} -h^{TT}_{lm,ij}\right) \,,\\ R^0_{\ ijk}&{}=&{}\displaystyle \delta _{ij}{{\dot{\psi }}}_{e,k}-\delta _{ik}{{\dot{\psi }}}_{e,l} +\frac{1}{2}\left( V_{j,ik}-V_{k,ij}\right) +\frac{1}{2}\left( \dot{h}^{TT}_{ik,j}-\dot{h}^{TT}_{ij,k}\right) . \end{array} \end{aligned}$$
(22)

Now defining \(\varPhi \equiv \phi +\dot{b}-\ddot{e}/2\) one has

$$\begin{aligned} \begin{array}{rcl} R_{00}&{}=&{}\displaystyle 3\ddot{\psi }_e+\nabla ^2\varPhi \,,\\ R_{0i}&{}=&{}\displaystyle 2\psi _{e,i}-\frac{1}{2}\nabla ^2 V_i\,,\\ R_{ij}&{}=&{}\displaystyle \delta _{ij}\left( -\ddot{\psi }_e+\nabla ^2\psi _e\right) +\psi _{e,ij}-\varPhi _{,ij}-\frac{1}{2}\left( \dot{V}_{i,j}+\dot{V}_{j,i}\right) +\frac{1}{2}\ddot{h}^{TT}_{ij}-\frac{1}{2}\nabla ^2 h^{TT}_{ij}\,, \end{array} \end{aligned}$$
(23)

hence

$$\begin{aligned} R=-6\ddot{\psi }_e-2\nabla ^2\varPhi +4\nabla ^2\psi _e. \end{aligned}$$
(24)

The Einstein’s equations can be split according to their representation under rotation:

  • Scalar

    $$\begin{aligned} \begin{array}{rcl} G_{00}&{}=&{}\displaystyle 2\nabla ^2\psi _e\,,\\ G_{0i}&{}=&{}\displaystyle 2{{\dot{\psi }}}_{e,i}\,,\\ G_{ij}&{}=&{}\delta _{ij}\left[ 2\ddot{\psi }_e+\nabla ^2(\varPhi -\psi _e)\right] +\left( \psi _e-\varPhi \right) _{,ij}. \end{array} \end{aligned}$$
    (25)
  • Vector

    $$\begin{aligned} \begin{array}{rcl} G_{00}&{}=&{}0\,,\\ G_{0i}&{}=&{}\displaystyle -\frac{1}{2}\nabla ^2 V_i\,,\\ G_{ij}&{}=&{}\displaystyle -\frac{1}{2}\left[ \dot{V}_{i,j}+\dot{V}_{j,i}\right] . \end{array} \end{aligned}$$
    (26)
  • Tensor

    $$\begin{aligned} \begin{array}{rcl} G_{00}&{}=&{}\displaystyle G_{0i}=0\,,\\ G_{ij}&{}=&{}\displaystyle \frac{1}{2}\ddot{h}^{TT}_{ij}-\frac{1}{2}\nabla ^2h^{TT}_{ij}\,, \end{array} \end{aligned}$$
    (27)

The action of a coordinate transformation

$$\begin{aligned} \begin{array}{rclcl} x^0&{}\rightarrow &{} {x'}^0&{}=&{}x^0+\xi ^0\,,\\ x^i&{}\rightarrow &{} {x'}^i&{}=&{}x^i+\xi ^i+a^{,i}\,, \end{array} \end{aligned}$$
(28)

with \(\xi ^i_{,i}=0\), has the following effects on SVT fields:

$$\begin{aligned} \begin{array}{rclcl} \phi &{}\rightarrow &{}\phi '&{}=&{}\phi -{{\dot{\xi }}}^0\,,\\ b&{}\rightarrow &{} b'&{}=&{}b+\xi ^0-\dot{a}\,,\\ \beta _i&{}\rightarrow &{}\beta _i'&{}=&{}\beta _i-{{\dot{\xi }}}^i\,,\\ \psi &{}\rightarrow &{}\psi '&{}=&{}\psi +\frac{1}{3}\nabla ^2a.\\ F_i&{}\rightarrow &{} F_i'&{}=&{}F_i-2\xi _i\,,\\ e&{}\rightarrow &{} e'&{}=&{}e-2a\,, \end{array} \end{aligned}$$
(29)

from which one can verify that fields in Eq. (8) are coordinate transformation invariant, at linear order.

Detailed derivation of scalar potentials

The inverse Laplacian operator appears in several equations applied to spherically symmetric functions, and it involves integrals of the type

$$\begin{aligned} -\frac{1}{4\pi }\int d^3x'\frac{1}{|\mathbf {x}-\mathbf {x}'|}f(r)= -\frac{1}{r}\int _0^r f(r'){r'}^2dr'-\int _r^\infty f(r')r'dr'\,, \end{aligned}$$
(30)

where it has been used that

$$\begin{aligned} \frac{1}{|\mathbf {r}(\theta ,\phi )-\mathbf {r}(\iota ,\alpha )|}=\frac{4\pi }{r_>} \sum _{l\ge 0}\sum _{|m|\le l}\frac{1}{2l+1}\left( \frac{r_<}{r_>}\right) ^l Y_{lm}^*(\theta ,\phi )Y_{lm}(\iota ,\alpha )\,, \end{aligned}$$
(31)

where \(r\equiv |\mathbf {r}(\theta ,\phi )|\), \(r'\equiv |\mathbf {r}'(\iota ,\alpha )|\), \(r_{<,>}\equiv max,min(r,r')\) and spherical symmetry has been used.

We complement the results of Sect. 3 by providing the explicit derivation of S from the first of Eqs. (7):

$$\begin{aligned} \begin{array}{rcl} \displaystyle S&{}=&{}\displaystyle -\frac{1}{4\pi }\int d^3 x\frac{{{\dot{\rho }}}}{|\mathbf {x}-\mathbf {x}'|}\\ &{}=&{}\displaystyle \frac{\varDelta (t)}{4\pi }\frac{M}{r}-\frac{M}{4\pi }\left( \frac{1}{r}\int _0^r {{\dot{\varDelta }}}(t-r')dr'+ \int _r^\infty \frac{{{\dot{\varDelta }}}(t-r')}{r'} dr'\right) \\ &{}=&{}\displaystyle \frac{M}{4\pi }\int _r^\infty \frac{\varDelta (t-r')}{{r'}^2}dr'\,, \end{array} \end{aligned}$$
(32)

where integration by parts and the relation \({{\dot{\varDelta }}}(t-r)=-\frac{\mathrm{d}\varDelta (t-r)}{\mathrm{d}r}\) have been used.

Analogously \(\sigma \), the remaining scalar component of the energy-momentum tensor, can be found from the second of Eqs. (7) (we remind that \({{\dot{\varTheta }}}(t)=\varDelta (t)\))

$$\begin{aligned} \begin{aligned} \sigma&=\displaystyle \frac{M}{32\pi ^2}\int d^3x'\frac{1}{|\mathbf {x}-\mathbf {x}'|} \left( \frac{\varDelta (t-r')}{{r'}^2}-3\int _{r'}^\infty \frac{{{\dot{\varDelta }}} (t-r'')}{{r''}^2}dr''\right) \\&=\displaystyle \frac{M}{4\pi }\left[ -\frac{1}{r}\int _0^r\varDelta (t-r')dr'-\int _r^\infty \frac{\varDelta (t-r')}{r'}dr' \right. \\&\displaystyle \left. \qquad +\frac{3}{r}\int _0^r dr' {r'}^2\int _{r'}^\infty \frac{\varDelta (t-r'')}{{r''}^3}dr'' +3\int _r^\infty dr' r'\int _{r'}^\infty \frac{\varDelta (t-r'')}{{r''}^3}dr'' \right] \\&=\displaystyle \frac{M}{4\pi }\left[ -\frac{1}{r}\int _0^r\varDelta (t-r')dr'-\int _r^\infty \frac{\varDelta (t-r')}{r'}dr'+ \frac{3}{r}\int _0^rdr''\frac{\varDelta (t-r'')}{{r''}^3} \right. \\&\displaystyle \qquad \left. \int _0^{r''}{r'}^2dr'+3\int _r^\infty dr''\frac{\varDelta (t-r'')}{{r''}^3} \left( \frac{1}{r}\int _0^r{r'}^2dr'+\int _r^{r''}r'dr'\right) \right] \\&=\displaystyle \frac{M}{8\pi }\int _r^\infty \frac{\varDelta (t-r')}{r'} \left( 1-\frac{r^2}{{r'}^2}\right) dr'\,, \end{aligned} \end{aligned}$$
(33)

where integration by parts has been used in the first passage and the integration order over \(r',r''\) has been exchanged in the following one (and in the final passage \(r''\) has been substitud with \(r'\)).

The solution for the scalar potential \(\psi _e\) can be found by direct integration of the first of Eqs. (9)

$$\begin{aligned} \begin{array}{rcl} \psi _e&{}=&{}\displaystyle -G_N\int d^3x\frac{\rho }{|\mathbf {x}-\mathbf {x}'|}\\ &{}=&{}\displaystyle -\left[ 1-\varTheta (t)\right] \frac{G_NM}{r}-G_NM\left( \frac{1}{r}\int _0^r\varDelta (t-r')dr'+\int _r^\infty \frac{\varDelta (t-r')}{r'}dr'\right) \\ &{}=&{}\displaystyle -\left[ 1-\varTheta (t-r)\right] \frac{G_NM}{r}-G_NM\int _r^\infty \frac{\varDelta (t-r')}{r'}dr'\\ &{}=&{}\displaystyle -\frac{G_NM}{r}+G_NM\int _r^\infty \frac{\varTheta (t-r')}{{r'}^2}dr'\,, \end{array}\nonumber \\ \end{aligned}$$
(34)

where integrations by parts and \(\varDelta (t-r)=-\frac{d\varTheta (t-r)}{dr}\) have been used repeatedly.

Taking the difference of the first two of Eqs. (9) and noting that from the first of Eqs. (7) one has \(2\nabla ^2\sigma =3(\dot{S}-p)\), one finds \(\psi _e-\varPhi =8\pi G_N\sigma \), which using Eq. (34) allows to derive

$$\begin{aligned} \begin{array}{rcl} \varPhi &{}=&{}\displaystyle -G_NM\int _r^\infty \frac{\varDelta (t-r')}{r'}\left( 1-\frac{r^2}{{r'}^2}\right) dr'-\frac{G_NM}{r}+G_NM\int _r^\infty \frac{\varTheta (t-r')}{{r'}^2}dr'\\ &{}=&{}\displaystyle -\frac{G_NM}{r}+G_NM\int _r^\infty \frac{\varTheta (t-r')}{{r'}^2} \left( 2-3\frac{r^2}{{r'}^2}\right) \\ &{}=&{}\displaystyle -\left[ 1-\varTheta (t-r)\right] \frac{G_NM}{r}-G_NM\int _r^\infty \frac{\varDelta (t-r')}{r'} \left( 2-\frac{r^2}{{r'}^2}\right) . \end{array} \end{aligned}$$
(35)

To compute the scalar part of the Riemann tensor entering the geodesic deviation equations one still needs

$$\begin{aligned} \begin{array}{rcl} \displaystyle \ddot{\psi }_e&{}=&{}\displaystyle G_NM\int _r^\infty \frac{{{\dot{\varDelta }}}(t-r)}{{r'}^2}dr'\\ &{}=&{}\displaystyle \varDelta (t-r)\frac{G_NM}{r^2}-2G_NM\int _r^\infty \frac{\varDelta (t-r')}{{r'}^3}dr'\,, \end{array} \end{aligned}$$
(36)

and the gradients of \(\varPhi \), which starting from the next to last line in Eq. (35) can be written as

$$\begin{aligned} \displaystyle \varPhi _{,i}&=\displaystyle x_i\left\{ \left[ 1+\varTheta (t-r)\right] \frac{G_NM}{r^3} -6G_NM\int _r^\infty \frac{\varTheta (t-r')}{{r'}^4}dr'\right\} \,,\nonumber \\ \displaystyle \varPhi _{,ij}&=\displaystyle \delta _{ij} \left\{ \left[ 1+\varTheta (t-r)\right] \frac{G_NM}{r^3} -6G_NM\int _r^\infty \frac{\varTheta (t-r')}{{r'}^4}dr'\right\} \nonumber \\&\displaystyle +\frac{x_ix_j}{r^2}\left\{ -\varDelta (t-r)\frac{G_NM}{r^2} -3\left[ 1+\varTheta (t-r)\right] \frac{G_NM}{r^3}+6\varTheta (t-r)\frac{G_NM}{r^3}\right\} \nonumber \\&=\displaystyle \delta _{ij}\left\{ \left[ 1-\varTheta (t-r)\right] \frac{G_NM}{r^3} +2G_NM\int _r^\infty \frac{\varDelta (t-r')}{{r'}^3}dr'\right\} \nonumber \\&\displaystyle +\frac{x_ix_j}{r^2}\left\{ -\varDelta (t-r)\frac{G_NM}{r^2} -3\left[ 1-\varTheta (t-r)\right] \frac{G_NM}{r^3}\right\} . \end{aligned}$$
(37)

Finally combining Eqs. (36) and (37) one gets Eq. (16).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leandro, H., Sturani, R. A gravitational non-radiative memory effect. Gen Relativ Gravit 53, 26 (2021). https://doi.org/10.1007/s10714-021-02801-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-021-02801-7

Keywords

Navigation