Skip to main content
Log in

Non singular M theory universe in loop quantum cosmology—inspired models

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study an M theory universe in the loop quantum cosmology—inspired models which involve a function, the choice of which leads to a variety of evolutions. The M theory universe is dominated by four stacks of intersecting brane–antibranes and, in general relativity, it becomes effectively four dimensional in future while its seven dimensional internal space reaches a constant size. We analyse the conditions required for non singular evolutions and obtain explicit solutions in the simplified case of a bi-anisotropic universe and a piece-wise linear function for which the evolutions are non singular. One may now ask whether the physics in the Planckian regime can enhance the internal volume to phenomenologically interesting values. In the simplified case considered here, there is no non trivial enhancement. We make some comments on it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. According to the BPS rules, two stacks of 5 branes intersect along three common spatial directions; two stacks of 2 branes intersect along zero common spatial directions; a stack of 2 branes intersect a stack of 5 branes along one common spatial direction; and each stack of branes is smeared uniformly along the other brane directions. There can be a wave along common intersection direction. See [5,6,7] for more details and for other such M theory configurations.

  2. In a certain approximation, Chowdhury and Mathur have derived from first principles the energy momentum tensors for the intersecting branes [18, 19]. The pressures, thus derived, satisfy the U-duality relation (20) and follow from the present expressions as a special case when \(p_\perp = 0 \).

  3. Even if the densities \(\rho _{(*)}\) are unequal initially, the dynamics of the general relativity Eqs. (4) resulting from the \(r^i_{(*)}\) given in Eqs. (22) is such that these densities become equal in the limit \(e^\Lambda \rightarrow \infty \) [21,22,23]. Such an M theory universe may therefore provide a detailed realisation of the maximum entropic principle that we had proposed in [17] to determine the number (3 + 1) of large spacetime dimensions.

References

  1. Strominger, A., Vafa, C.: Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B 379, 99 (1996). https://doi.org/10.1016/0370-2693(96)00345-0. arXiv:hep-th/9601029

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Callan, C.G., Maldacena, J.M.: D-brane approach to black hole quantum mechanics. Nucl. Phys. B 472, 591 (1996). https://doi.org/10.1016/0550-3213(96)00225-8. arXiv:hep-th/9602043

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Horowitz, G.T., Maldacena, J.M., Strominger, A.: Nonextremal black hole microstates and U duality. Phys. Lett. B 383, 151 (1996). https://doi.org/10.1016/0370-2693(96)00738-1. arXiv:hep-th/9603109

    Article  ADS  MathSciNet  Google Scholar 

  4. Horowitz, G.T., Lowe, D.A., Maldacena, J.M.: Statistical entropy of nonextremal four-dimensional black holes and U duality. Phys. Rev. Lett. 77, 430 (1996). https://doi.org/10.1103/PhysRevLett.77.430. arXiv:hep-th/9603195

    Article  ADS  Google Scholar 

  5. Tseytlin, A.A.: Harmonic superpositions of M-branes. Nucl. Phys. B 475, 149 (1996). https://doi.org/10.1016/0550-3213(96)00328-8. arXiv:hep-th/9604035

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Cvetic, M., Tseytlin, A.A.: Nonextreme black holes from nonextreme intersecting M-branes. Nucl. Phys. B 478, 181 (1996). https://doi.org/10.1016/0550-3213(96)00411-7. arXiv:hep-th/9606033

    Article  ADS  MATH  Google Scholar 

  7. Tseytlin, A.A.: ’No force’ condition and BPS combinations of p-branes in eleven-dimensions and ten-dimensions. Nucl. Phys. B 487, 141 (1997). https://doi.org/10.1016/S0550-3213(96)00692-X. arXiv:hep-th/9609212

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bowick, M.J., Wijewardhana, L.C.R.: Superstrings at high temperature. Phys. Rev. Lett. 54, 2485 (1985). https://doi.org/10.1103/PhysRevLett.54.2485

    Article  ADS  Google Scholar 

  9. Bowick, M.J., Wijewardhana, L.C.R.: Superstring gravity and the early universe. Gen. Relativ. Gravit. 18, 59 (1986). https://doi.org/10.1007/BF00843749

    Article  ADS  Google Scholar 

  10. Brandenberger, R.H., Vafa, C.: Superstrings in the early universe. Nucl. Phys. B 316, 391 (1989). https://doi.org/10.1016/0550-3213(89)90037-0

    Article  ADS  MathSciNet  Google Scholar 

  11. Tseytlin, A.A., Vafa, C.: Elements of string cosmology. Nucl. Phys. B 372, 443 (1992). https://doi.org/10.1016/0550-3213(92)90327-8. arXiv:hep-th/9109048

    Article  ADS  MathSciNet  Google Scholar 

  12. Gasperini, M., Veneziano, G.: Pre-big bang in string cosmology. Astropart. Phys. 1, 317 (1993). https://doi.org/10.1016/0927-6505(93)90017-8. arXiv:hep-th/9211021

    Article  ADS  Google Scholar 

  13. Gasperini, M., Veneziano, G.: The pre-big bang scenario in string cosmology. Phys. Rept. 373, 1 (2003). https://doi.org/10.1016/S0370-1573(02)00389-7. arXiv:hep-th/0207130

    Article  ADS  MathSciNet  Google Scholar 

  14. Veneziano, G.: A model for the big bounce. JCAP 03, 004 (2004). https://doi.org/10.1088/1475-7516/2004/03/004. arXiv:hep-th/0312182

    Article  ADS  Google Scholar 

  15. Nayeri, A., Brandenberger, R.H., Vafa, C.: Producing a scale-invariant spectrum of perturbations in a Hagedorn phase of string cosmology. Phys. Rev. Lett. 97, 021302 (2006). https://doi.org/10.1103/PhysRevLett.97.021302. arXiv:hep-th/0511140

    Article  ADS  Google Scholar 

  16. Rama, S Kalyana: A stringy correspondence principle in cosmology. Phys. Lett. B 638, 100 (2006). https://doi.org/10.1016/j.physletb.2006.05.047. arXiv:hep-th/0603216

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Rama, S.Kalyana: A principle to determine the number (\(3 + 1\)) of large spacetime dimensions. Phys. Lett. B 645, 365 (2007). https://doi.org/10.1016/j.physletb.2006.11.077. arXiv:hep-th/0610071

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Chowdhury, B.D., Mathur, S.D.: Fractional brane state in the early universe. Class. Quant. Grav. 24, 2689 (2007). https://doi.org/10.1088/0264-9381/24/10/014. arXiv:hep-th/0611330

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Mathur, S.D.: What is the state of the early universe? J. Phys. Conf. Ser. 140, 012009 (2008). https://doi.org/10.1088/1742-6596/140/1/012009. arXiv:0803.3727 [hep-th]

    Article  Google Scholar 

  20. Rama, S.Kalyana: Entropy of anisotropic universe and fractional branes. Gen. Relativ. Gravit. 39, 1773 (2007). https://doi.org/10.1007/s10714-007-0488-1. arXiv:hep-th/0702202 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Rama, S.Kalyana: Consequences of U dualities for intersecting branes in the universe. Phys. Lett. B 656, 226 (2007). https://doi.org/10.1016/j.physletb.2007.09.069. arXiv:0707.1421 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Bhowmick, S., Digal, S., Rama, S.Kalyana: Stabilisation of seven (toroidal) directions and expansion of the remaining three in an M theoretic early universe model. Phys. Rev. D 79, 101901 (2009). https://doi.org/10.1103/PhysRevD.79.101901. arXiv:0810.4049 [hep-th]

    Article  ADS  Google Scholar 

  23. Bhowmick, S., Rama, S.K.: \(10 + 1\) to \(3 + 1\) in an early universe with mutually BPS intersecting branes. Phys. Rev. D 82, 083526 (2010). https://doi.org/10.1103/PhysRevD.82.083526. arXiv:1007.0205 [hep-th]

    Article  ADS  Google Scholar 

  24. Ashtekar, A.: New variables for classical and quantum gravity. Phys. Rev. Lett. 57, 2244 (1986). https://doi.org/10.1103/PhysRevLett.57.2244

    Article  ADS  MathSciNet  Google Scholar 

  25. Ashtekar, A.: New Hamiltonian formulation of general relativity. Phys. Rev. D 36, 1587 (1987). https://doi.org/10.1103/PhysRevD.36.1587

    Article  ADS  MathSciNet  Google Scholar 

  26. Ashtekar, A., Lewandowski, J.: Background independent quantum gravity: a status report. Class. Quant. Grav. 21, R53 (2004). https://doi.org/10.1088/0264-9381/21/15/R01. arXiv:gr-qc/0404018

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Ashtekar, A.: Lectures on non-perturbative canonical gravity. Notes prepared in collaboration with R. S. Tate. World Scientific, Singapore (1991)

    Book  Google Scholar 

  28. Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  29. Thiemann, T.: Introduction to Modern Canonical Quantum General Relativity. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  30. Rovelli, C., Vidotto, F.: Covariant Loop Quantum Gravity. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  31. Rovelli, C., Smolin, L.: Discreteness of area and volume in quantum gravity. Nucl. Phys. B 442, 593 (1995). https://doi.org/10.1016/0550-3213(95)00150-Q. arXiv:gr-qc/9411005

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Ashtekar, A., Lewandowski, J.: Quantum theory of geometry. 1: area operators. Class. Quant. Grav. 14, A55 (1997). https://doi.org/10.1088/0264-9381/14/1A/006. arXiv:gr-qc/9602046

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Ashtekar, A., Lewandowski, J.: Quantum theory of geometry. 2. Volume operators. Adv. Theor. Math. Phys. 1, 388 (1998). https://doi.org/10.4310/ATMP.1997.v1.n2.a8. arXiv:gr-qc/9711031

    Article  MathSciNet  Google Scholar 

  34. Rovelli, C.: Black hole entropy from loop quantum gravity. Phys. Rev. Lett. 77, 3288 (1996). https://doi.org/10.1103/PhysRevLett.77.3288. arXiv:gr-qc/9603063

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Ashtekar, A., Baez, J., Corichi, A., Krasnov, K.: Quantum geometry and black hole entropy. Phys. Rev. Lett. 80, 904 (1998). https://doi.org/10.1103/PhysRevLett.80.904. arXiv:gr-qc/9710007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Bojowald, M.: Absence of singularity in loop quantum cosmology. Phys. Rev. Lett. 86, 5227 (2001). https://doi.org/10.1103/PhysRevLett.86.5227. arXiv:gr-qc/0102069

    Article  ADS  MathSciNet  Google Scholar 

  37. Bojowald, M.: The Inverse scale factor in isotropic quantum geometry. Phys. Rev. D 64, 084018 (2001). https://doi.org/10.1103/PhysRevD.64.084018. arXiv:gr-qc/0105067

    Article  ADS  MathSciNet  Google Scholar 

  38. Bojowald, M.: Isotropic loop quantum cosmology. Class. Quant. Grav. 19, 2717 (2002). https://doi.org/10.1088/0264-9381/19/10/313. arXiv:gr-qc/0202077

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Bojowald, M.: Homogeneous loop quantum cosmology. Class. Quant. Grav. 20, 2595 (2003). https://doi.org/10.1088/0264-9381/20/13/310. arXiv:gr-qc/0303073

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Ashtekar, A., Bojowald, M., Lewandowski, J.: Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys. 7, 233 (2003). https://doi.org/10.4310/ATMP.2003.v7.n2.a2. arXiv:gr-qc/0304074

    Article  MathSciNet  Google Scholar 

  41. Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang. Phys. Rev. Lett. 96, 141301 (2006). https://doi.org/10.1103/PhysRevLett.96.141301. arXiv:gr-qc/0602086

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang: improved dynamics. Phys. Rev. D 74, 084003 (2006). https://doi.org/10.1103/PhysRevD.74.084003. arXiv:gr-qc/0607039

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Ashtekar, A., Wilson-Ewing, E.: Loop quantum cosmology of Bianchi I models. Phys. Rev. D 79, 083535 (2009). https://doi.org/10.1103/PhysRevD.79.083535. arXiv:0903.3397 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  44. Ashtekar, A., Singh, P.: Loop quantum cosmology: a status report. Class. Quant. Grav. 28, 213001 (2011). https://doi.org/10.1088/0264-9381/28/21/213001. arXiv:1108.0893 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Rama, S.Kalyana: A class of LQC-inspired models for homogeneous, anisotropic cosmology in higher dimensional early universe. Gen. Relativ. Gravit. 48, 155 (2016). https://doi.org/10.1007/s10714-016-2150-2. arXiv:1608.03231 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Rama, S.Kalyana: Variety of \((d + 1)\) dimensional cosmological evolutions with and without bounce in a class of LQC—inspired models. Gen. Relativ. Gravit. 49, 113 (2017). https://doi.org/10.1007/s10714-017-2277-9. arXiv:1706.08220 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Rama, S.Kalyana: Isotropic LQC and LQC-inspired models with a massless scalar field as generalised Brans–Dicke theories. Gen. Relativ. Gravit. 50, 56 (2018). https://doi.org/10.1007/s10714-018-2378-0. arXiv:1802.06349 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Arkani-Hamed, N., Dimopoulos, S., Dvali, G.R.: Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity. Phys. Rev. D 59, 086004 (1999). https://doi.org/10.1103/PhysRevD.59.086004. arXiv:hep-ph/9807344

    Article  ADS  Google Scholar 

  49. Conlon, J.P., Quevedo, F.: Astrophysical and cosmological implications of large volume string compactifications. JCAP 08, 019 (2007). https://doi.org/10.1088/1475-7516/2007/08/019. arXiv:0705.3460 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  50. Helling, R. C.: Higher curvature counter terms cause the bounce in loop cosmology, arXiv:0912.3011 [gr-qc]

  51. Bodendorfer, N., Thiemann, T., Thurn, A.: New variables for classical and quantum gravity in all dimensions I. Hamiltonian analysis. Class. Quant. Grav. 30, 045001 (2013). https://doi.org/10.1088/0264-9381/30/4/045001. arXiv:1105.3703 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Bodendorfer, N., Thiemann, T., Thurn, A.: New variables for classical and quantum gravity in all dimensions II. Lagrangian analysis. Class. Quant. Grav. 30, 045002 (2013). https://doi.org/10.1088/0264-9381/30/4/045002. arXiv:1105.3704 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Bodendorfer, N., Thiemann, T., Thurn, A.: New variables for classical and quantum gravity in all dimensions III. Quantum theory. Class. Quant. Grav. 30, 045003 (2013). https://doi.org/10.1088/0264-9381/30/4/045003. arXiv:1105.3705 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Zhang, X.: Higher dimensional loop quantum cosmology. Eur. Phys. J. C 76, 395 (2016). https://doi.org/10.1140/epjc/s10052-016-4249-8. arXiv:1506.05597 [gr-qc]

    Article  ADS  Google Scholar 

  55. Rama, S.K., Saha, A.P.: Unpublished notes

  56. Ashtekar, A., Wilson-Ewing, E.: Loop quantum cosmology of Bianchi type II models. Phys. Rev. D 80, 123532 (2009). https://doi.org/10.1103/PhysRevD.80.123532. arXiv:0910.1278 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  57. Wilson-Ewing, E.: Loop quantum cosmology of Bianchi type IX models. Phys. Rev. D 82, 043508 (2010). https://doi.org/10.1103/PhysRevD.82.043508. arXiv:1005.5565 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  58. Yang, J., Ding, Y., Ma, Y.: Alternative quantization of the Hamiltonian in loop quantum cosmology II: including the Lorentz term. Phys. Lett. B 682, 1 (2009). https://doi.org/10.1016/j.physletb.2009.10.072. arXiv:0904.4379 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  59. Martin-Benito, M., Marugan, G.A.M., Olmedo, J.: Further improvements in the understanding of isotropic loop quantum cosmology. Phys. Rev. D 80, 104015 (2009). https://doi.org/10.1103/PhysRevD.80.104015. arXiv:0909.2829 [gr-qc]

    Article  ADS  Google Scholar 

  60. Dapor, A., Liegener, K.: Cosmological effective Hamiltonian from full loop quantum gravity dynamics. Phys. Lett. B 785, 506 (2018). https://doi.org/10.1016/j.physletb.2018.09.005. arXiv:1706.09833 [gr-qc]

    Article  ADS  MATH  Google Scholar 

  61. Assanioussi, M., Dapor, A., Liegener, K., Pawlowski, T.: Emergent de Sitter Epoch of the quantum cosmos from loop quantum cosmology. Phys. Rev. Lett. 121, 081303 (2018). https://doi.org/10.1103/PhysRevLett.121.081303. arXiv:1801.00768 [gr-qc]

    Article  ADS  Google Scholar 

  62. García-Quismondo, A.,  Mena Marugán, G.A.: The Martin-Benito–Mena Marugan–Olmedo prescription for the Dapor–Liegener model of loop quantum cosmology. Phys. Rev. D 99, 083505 (2019). https://doi.org/10.1103/PhysRevD.99.083505. arXiv:1903.00265 [gr-qc]

    Article  ADS  Google Scholar 

  63. Fernandez-Mendez, M., Mena Marugan, G.A., Olmedo, J.: Hybrid quantization of an inflationary universe. Phys. Rev. D 86, 024003 (2012). https://doi.org/10.1103/PhysRevD.86.024003. arXiv:1205.1917 [gr-qc]

    Article  ADS  Google Scholar 

  64. Agullo, I., Ashtekar, A., Nelson, W.: A quantum gravity extension of the inflationary scenario. Phys. Rev. Lett. 109, 251301 (2012). https://doi.org/10.1103/PhysRevLett.109.251301. arXiv:1209.1609 [gr-qc]

    Article  ADS  Google Scholar 

  65. Agullo, I., Ashtekar, A., Nelson, W.: Extension of the quantum theory of cosmological perturbations to the Planck era. Phys. Rev. D 87, 043507 (2013). https://doi.org/10.1103/PhysRevD.87.043507. arXiv:1211.1354 [gr-qc]

    Article  ADS  Google Scholar 

  66. Agullo, I., Ashtekar, A., Nelson, W.: The pre-inflationary dynamics of loop quantum cosmology: confronting quantum gravity with observations. Class. Quant. Grav. 30, 085014 (2013). https://doi.org/10.1088/0264-9381/30/8/085014. arXiv:1302.0254 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Bojowald, M., Hossain, G.M., Kagan, M., Shankaranarayanan, S.: Anomaly freedom in perturbative loop quantum gravity. Phys. Rev. D 78, 063547 (2008). https://doi.org/10.1103/PhysRevD.78.063547. arXiv:0806.3929 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  68. Cailleteau, T., Mielczarek, J., Barrau, A., Grain, J.: Anomaly-free scalar perturbations with holonomy corrections in loop quantum cosmology. Class. Quant. Grav. 29, 095010 (2012). https://doi.org/10.1088/0264-9381/29/9/095010. arXiv:1111.3535 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Cailleteau, T., Barrau, A., Grain, J., Vidotto, F.: Consistency of holonomy-corrected scalar, vector and tensor perturbations in loop quantum cosmology. Phys. Rev. D 86, 087301 (2012). https://doi.org/10.1103/PhysRevD.86.087301. arXiv:1206.6736 [gr-qc]

    Article  ADS  Google Scholar 

  70. Wilson-Ewing, E.: Separate universes in loop quantum cosmology: framework and applications. Int. J. Mod. Phys. D 25, 1642002 (2016). https://doi.org/10.1142/S0218271816420025. arXiv:1512.05743 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Wilson-Ewing, E.: Testing loop quantum cosmology. Comptes Rendus Phys. 18, 207 (2017). https://doi.org/10.1016/j.crhy.2017.02.004. arXiv:1612.04551 [gr-qc]

    Article  ADS  Google Scholar 

  72. Agullo, I., Morris, N.A.: Detailed analysis of the predictions of loop quantum cosmology for the primordial power spectra. Phys. Rev. D 92, 124040 (2015). https://doi.org/10.1103/PhysRevD.92.124040. arXiv:1509.05693 [gr-qc]

    Article  ADS  Google Scholar 

  73. Agullo, I., Ashtekar, A., Gupt, B.: Phenomenology with fluctuating quantum geometries in loop quantum cosmology. Class. Quant. Grav. 34, 074003 (2017). https://doi.org/10.1088/1361-6382/aa60ec. arXiv:1611.09810 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Zhu, T., Wang, A., Cleaver, G., Kirsten, K., Sheng, Q.: Pre-inflationary universe in loop quantum cosmology. Phys. Rev. D 96, 083520 (2017). https://doi.org/10.1103/PhysRevD.96.083520. arXiv:1705.07544 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  75. Agullo, I.: Primordial power spectrum from the Dapor–Liegener model of loop quantum cosmology. Gen. Relativ. Gravit. 50, 91 (2018). https://doi.org/10.1007/s10714-018-2413-1. [arXiv:1805.11356 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Li, B.F., Singh, P., Wang, A.: Qualitative dynamics and inflationary attractors in loop cosmology. Phys. Rev. D 98, 066016 (2018). https://doi.org/10.1103/PhysRevD.98.066016. arXiv:1807.05236 [gr-qc]

    Article  ADS  Google Scholar 

  77. Li, B.F., Zhu, T., Wang, A., Kirsten, K., Cleaver, G., Sheng, Q.: Pre-inflationary perturbations from closed algebra approach in loop quantum cosmology, arXiv:1812.11191 [gr-qc]

  78. Barragan, C., Olmo, G.J.: Isotropic and anisotropic bouncing cosmologies in Palatini gravity. Phys. Rev. D 82, 084015 (2010). https://doi.org/10.1103/PhysRevD.82.084015. arXiv:1005.4136 [gr-qc]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the referee for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kalyana Rama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Anisotropic solutions in general relativity

Consider the general relativity Eqs. (3)–(5) for the anisotropic case. When the equations of state are linear, it is straightforward to solve these equations and obtain analytic solutions [23]. It follows from Eqs. (14) that, upon replacing \(\kappa ^2\) by \(c^2 \kappa ^2 \), these solutions are applicable to the LQC—inspired models when \(f(x) = c x + c_0 \).

We now present these solutions. First, define a new variable \(\tau \) by

$$\begin{aligned} d t = e^\Lambda \; d \tau \; \; \; \longleftrightarrow \; \; \; t - t_0 = \int _{\tau _0}^\tau d \tau \; e^\Lambda \end{aligned}$$
(53)

where \(t_0\) and \(\tau _0\) are initial times. Then, for any function \(\psi (t(\tau )) \), we have

$$\begin{aligned} \psi _\tau \; = \; e^\Lambda \; \psi _t \; \; , \; \; \; \psi _{\tau \tau } \; = \; e^{2 \Lambda } \; (\psi _{t t} + \Lambda _t \psi _t) . \end{aligned}$$

Defining \((\hat{*}) = e^{2 \Lambda } \; (*)\) for \( (*) = (\rho , \; p_i, \;r^i) \), Eqs. (3)–(5) become

$$\begin{aligned} \sum _{i j} G_{i j} \; \lambda ^i_\tau \; \lambda ^j_\tau= & {} 2 \kappa ^2 \; \hat{\rho } \end{aligned}$$
(54)
$$\begin{aligned} \lambda ^i_{\tau \tau }= & {} \kappa ^2 \; \hat{r}^i \end{aligned}$$
(55)
$$\begin{aligned} (\hat{\rho })_\tau= & {} \sum _i (\hat{\rho } - \hat{p}_i) \; \lambda ^i_\tau . \end{aligned}$$
(56)

Let the equations of state be linear and be given by

$$\begin{aligned} p_i = (1 - u_i) \; \rho \end{aligned}$$
(57)

where \(u_i\) are constants. Define \(l, \; v^i\), and \({{\mathcal {G}}}\) by

$$\begin{aligned} l = \sum _i u_i \; \lambda ^i, \; \; \; v^i = \sum _j G^{i j} \; u_j, \; \; \; {{\mathcal {G}}} = \sum _i v^i \; u_i = \sum _{i j} G^{i j} \; u_i \; u_j \end{aligned}$$
(58)

and let the initial values of various quantities at \(t = t_0\) be given by

$$\begin{aligned}&\left( \lambda ^i, \; \lambda ^i_t, \; \rho \; ; \; \Lambda , \; l, \; l_t \; ; \; \tau , \; \lambda ^i_\tau , \; l_\tau , \; \hat{\rho } \right) _{t = t_0} \nonumber \\&\quad = \left( \lambda ^i_0, \; k^i, \; \rho _0\; ; \; \Lambda _0, \; l_0, \; l_{t 0} \; ; \; \tau _0, \; \lambda ^i_{\tau 0}, \; l_{\tau 0}, \; \hat{\rho }_0 \right) \end{aligned}$$
(59)

where

$$\begin{aligned} \rho _0 \;> & {} \; 0 ,\quad \sum _{i j} G_{i j} \; k^i \; k^j \; = \; 2 \kappa ^2 \; \rho _0 \nonumber \\ \Lambda _0= & {} \sum _i \lambda ^i_0 ,\quad l_0 = \sum _i u_i \; \lambda ^i_0 \; \; , \; \; \; l_{t 0} = \sum _i u_i \; k^i \nonumber \\ \lambda ^i_{\tau 0}= & {} e^{\Lambda _0} \; k^i , \quad l_{\tau 0} = e^{\Lambda _0} \; l_{t 0} \; \; , \; \; \; \hat{\rho }_0 = e^{2 \Lambda _0} \; \rho _0 . \end{aligned}$$
(60)

Then Eqs. (55) and (56) give

$$\begin{aligned} \lambda ^i_{\tau \tau }= & {} \kappa ^2 \; v^i \; \hat{\rho } \end{aligned}$$
(61)
$$\begin{aligned} l_{\tau \tau }= & {} \kappa ^2 \; {{\mathcal {G}}} \; \hat{\rho } \end{aligned}$$
(62)
$$\begin{aligned} \hat{\rho }= & {} \hat{\rho }_0 \; e^{l - l_0} \end{aligned}$$
(63)

and it follows from Eqs. (61) and (62) that

$$\begin{aligned} \lambda ^i - \lambda ^i_0 \; = \; \frac{v^i}{{\mathcal {G}}} \; (l - l_0) + L^i \; (\tau - \tau _0) . \end{aligned}$$
(64)

Since \(l = \sum _i u_i \lambda ^i \), it follows that the integration constants \(L^i\) must satisfy the constraint \(\sum _i u_i L^i = 0 \). This constraint is identically satisfied if \(L^i = e^{\Lambda _0} \left( k^i - \frac{v^i}{{\mathcal {G}}} \; \; l_{t 0} \right) \) where \(l_{t 0} = \sum _i u_i k^i \), see Eqs. (60). Thus, the set of d number of initial values \(\{ k^i \}\) is equivalent to the set of \((1 + d)\) number of initial values \(\{ l_{t 0}, \; L^i \}\) together with one constraints on \(L^i \). Upon using \(\sum _i u_i L^i = 0 \), Eq. (54) gives

$$\begin{aligned} (l_\tau )^2 \; = \; 2 \; {{\mathcal {G}}} \; \left( E + \kappa ^2 \; \hat{\rho } \right) , \; \; \; 2 \; E = - \; \sum _{i j} G_{i j} \; L^i \; L^j . \end{aligned}$$
(65)

Now, in principle, Eqs. (62), (63), and (65) give \(l(\tau ) \) and Eqs. (64) and (53) give \(\lambda ^i (\tau )\) and \(t(\tau )\) from which \(\tau (t), \; l (t)\), and \(\lambda ^i (t)\) follow. Also, it can be shown that if \(\sum _i u_i L^i = 0 \) and \({{\mathcal {G}}} = \sum _{i j} G^{i j} \; u_i u_j > 0\) then \(E \ge 0 \) and E will vanish if and only if all \(L^i\) vanish [23]. Henceforth, we assume that \({{\mathcal {G}}} > 0\) and \(E > 0 \).

For the case of bi-anisotropic universe considered in this paper, see Eqs. (26) and (27), it follows straightforwardly that

$$\begin{aligned}&\tilde{p} = (1 - \tilde{u}) \; \rho ,\quad p = (1 - u) \; \rho \nonumber \\&\tilde{v} = \frac{n u - (n - 1) \tilde{u}}{\tilde{n} + n - 1} ,\quad v = \frac{\tilde{n} \tilde{u} - (\tilde{n} - 1) u}{\tilde{n} + n - 1} \nonumber \\&l = \tilde{n} \tilde{u} \tilde{\lambda } + n u \lambda ,\quad {{\mathcal {G}}} = \tilde{n} \tilde{u} \tilde{v} + n u v \nonumber \\&\tilde{n} \tilde{u} \tilde{L} + n u L = 0 , \quad 2 E = \frac{n (n + \tilde{n} - 1) {{\mathcal {G}}} L^2}{\tilde{n} \tilde{u}^2} \end{aligned}$$
(66)

where the expression for E follows after some algebra. If \(\tilde{v} = 0 \), which is necessary for the \((\tilde{n} + n)\) dimensional space to become effectively n dimensional in the limit \(e^\Lambda \rightarrow \infty \), then one has

$$\begin{aligned}&\tilde{u} = \frac{n u}{n - 1} ,\quad v = \frac{u}{n - 1} \nonumber \\&l = \tilde{u} \; \left( \tilde{n} \tilde{\lambda } + (n - 1) \lambda \right) ,\quad {{\mathcal {G}}} = \frac{n u^2}{n - 1} \nonumber \\&\tilde{n} \tilde{L} + (n - 1) L = 0 ,\quad 2 E = \frac{(n - 1) (n + \tilde{n} - 1) L^2}{\tilde{n}} . \end{aligned}$$
(67)

Consider now the solution \(l(\tau )\) for Eqs. (62), (63), and (65). As can be verified easily, it is given by

$$\begin{aligned} \kappa ^2 \; \hat{\rho } \; = \; \kappa ^2 \; \hat{\rho }_0 \; e^{l - l_0} \; = \; \frac{E}{Sinh^2 \; \sigma (\tau _\infty - \tau )} \end{aligned}$$
(68)

where \(2 \sigma ^2 = {{\mathcal {G}}} E \). Note that the sign of \(\sigma \) is immaterial; that

$$\begin{aligned} l_\tau \; = \; 2 \; \sigma \; Coth \; \sigma (\tau _\infty - \tau ); \end{aligned}$$
(69)

and that setting \(l = l_0\) and \(\tau = \tau _0\) in Eq. (68) gives \(\tau _\infty \) in terms of E and \(\hat{\rho }_0 \). Eqs. (64) and (53) will now give \(\lambda ^i (\tau )\) and \(t(\tau )\) from which \(\tau (t), \; l (t)\), and \(\lambda ^i (t)\) follow. Taking \(\sigma > 0\) and \(l_{\tau 0} > 0\) for the sake of definiteness, we now mention some features of these solutions.

  • Since \(l_{\tau 0} > 0\), it follows from Eq. (69) that \(\tau _\infty > \tau _0 \). It follows from Eq. (68) that \(l(\tau )\) varies monotonically between \(- \infty \) and \(+ \infty \), that \(l \rightarrow - \infty \) as \(\tau \; \rightarrow \; - \infty \), and that \(l \rightarrow \infty \) as \(\tau \; \rightarrow \; \tau _\infty \).

  • In the limit \(\tau \; \rightarrow \; \tau _\infty \) from below, one has \(l(\tau ) \; \sim \; - 2 \; ln \; (\tau _\infty - \tau ) \; \rightarrow \; \infty \). Eqs. (64) and (53) then give, upto unimportant constants,

    $$\begin{aligned} t\sim & {} (\tau _\infty - \tau )^{- \frac{2 B - {{\mathcal {G}}}}{{\mathcal {G}}}}, \; \; \; B = \sum _j v^j \end{aligned}$$
    (70)
    $$\begin{aligned} e^{\lambda ^i}\sim & {} (\tau _\infty - \tau )^{- \frac{2 v^i}{{\mathcal {G}}}} \; \sim \; t^{\frac{2 v^i}{2 B - {{\mathcal {G}}}}} \end{aligned}$$
    (71)
    $$\begin{aligned} e^\Lambda\sim & {} (\tau _\infty - \tau )^{- \frac{2 B}{{\mathcal {G}}}} \; \sim \; t^{\frac{2 B}{2 B - {{\mathcal {G}}}}} . \end{aligned}$$
    (72)

    For the bi-anisotropic universe, it follows from Eqs. (66) that

    $$\begin{aligned} 2 B - {{\mathcal {G}}} = \tilde{n} \tilde{v} \; (2 - \tilde{u}) + n v \; (2 - u) . \end{aligned}$$
    (73)

    Hence, for \(\tilde{v} = 0 \), one has \(e^{ \tilde{\lambda }} \sim const \) and \(e^{\lambda } \sim t^{\frac{2}{n (2 - u)}} \) which is the standard n dimensional result.

  • In the limit \(\tau \; \rightarrow \; - \infty \), one has \(l(\tau ) \; \sim \; 2 \; \sigma \tau \; \rightarrow \; - \infty \). Eqs. (64) then imply that \(\lambda ^i (\tau )\) are all linear in \(\tau \). Let \(\tau \rightarrow - \infty \) and \(e^\Lambda \rightarrow 0\) in this limit and, upto unimportant constants, let

    $$\begin{aligned} \lambda ^i \; \sim \; q^i \; \tau , \; \; \; \Lambda \; \sim \; q \; \tau , \; \; \; q = \sum _i q^i > 0 . \end{aligned}$$

    Then, after some algebra, it follows from Eq. (53) that

    $$\begin{aligned} e^\Lambda \; \sim \; e^{q \; \tau } \; \sim \; q \; t \; \; \rightarrow \; 0 , \; \; \; \; \; e^{\lambda ^i} \; \sim \; e^{q^i \; \tau } \; \sim \; \left( q \; t \right) ^{\frac{q^i}{q}} \end{aligned}$$
    (74)

    which are the Kasner-type solutions.

Appendix B: Isotropic solutions in LQC—inspired models

Consider the fully isotropic case where

$$\begin{aligned} (m^i, \; f^i, \; g_i, \; X_i, \; \lambda ^i, \; p_i, \; r^i ) \; = \; (m, \; f, \; g, \; X, \; \lambda , \; p, \; r ) \end{aligned}$$

for \(i = 1, 2, \ldots , d \). Then

$$\begin{aligned} g \; = \; \frac{d \; f}{d m}, \; \; \; X \; = \; (d - 1) \; g f, \; \; \; r \; = \; \frac{\rho - p}{d - 1} \end{aligned}$$

and Eqs. (10)–(12) give

$$\begin{aligned} f^2= & {} \frac{2 \; \gamma ^2 \lambda _{qm}^2 \kappa ^2 \; \rho }{d \; (d - 1)} \end{aligned}$$
(75)
$$\begin{aligned} m_t= & {} - \; \frac{\gamma \lambda _{qm} \kappa ^2}{d - 1} \; (\rho + p) \end{aligned}$$
(76)
$$\begin{aligned} \lambda _t= & {} \frac{g \; f}{\gamma \lambda _{qm}} \; \; \; \Longrightarrow \; \; \; (\lambda _t)^2 \; = \; \frac{2 \kappa ^2 \; (\rho \; g^2)}{d (d - 1)} . \end{aligned}$$
(77)

Let the equation of state be linear and be given by \(p = (1 - u) \rho \) where \(u < 2\) is a constant. Then Eqs. (5) and (75)–(77) may be solved explicitly if certain integrations and functional inversions can be performed. Eqs. (5) and (75) give

$$\begin{aligned} \frac{\rho }{\rho _0} \; = \; \frac{f^2}{f^2_0}\; = \; e^{ - (2 - u) \; d \; (\lambda - \lambda _0)} \end{aligned}$$
(78)

which leads to \(\lambda (m) \). Eqs. (75) and (76) then lead to t(m) given by

$$\begin{aligned} c_{qm} \; (t - t_0) \; = \; - \; \int ^m_{m_0} \frac{d m}{f^2} \end{aligned}$$
(79)

where \(c_{qm} = \frac{(2 - u) \; d}{2 \; \gamma \lambda _{qm}} \). Inverting t(m) then gives m(t) and \(\lambda (t) \). The integrations and functional inversions required here can be performed explicitly for \(f(x) = c x + c_0\) and also for \(f(x) = sin \; x \) but not for a generic f(x) . The resulting solutions are given in [45, 46].

Consider now the isotropic solutions for the simplified, piece-wise linear function f(x) given in Eq. (36). Equation (78) gives the density \(\rho (m)\) and the scale factor \(e^{\lambda (m)} \). Let the initial value \(m_0\) at time \(t_0\) lie in the range \(0< m_0 < A \). It then follows that as m increases from 0 to \(m_0\) to A to \(A + 2 \Delta \) to \(2 m_*\), the function f increases from 0 to \(m_0\) to A, remaining at A, and then decreasing to 0. Hence, correspondingly, the scale factor \(e^{\lambda (m)}\) decreases from \(\infty \) to \(e^{\lambda _0}\), decreases further, then remains constant, and then increases again to \(\infty \).

The time t(m) follows straightforwardly upon performing the integration in Eq. (79), and is given by

$$\begin{aligned} c_{qm} \; (t - t_0)= & {} - \frac{1}{m_0} + \frac{1}{m} \; \; \; for \; \; 0 \le m \le A \nonumber \\= & {} \frac{2}{A} - \frac{1}{m_0} - \frac{m}{A^2} \; \; \; for \; \; A \le m \le A + 2 \Delta \nonumber \\= & {} \frac{2}{A} - \frac{1}{m_0} - \frac{2 \Delta }{A^2} + \frac{1}{m - 2 m_*} \; \; \; for \; \; A + 2 \Delta \le m \le 2 m_* . \end{aligned}$$
(80)

Hence, as m increases from 0 to \(m_0\) to A to \(A + 2 \Delta \) to \(2 m_* \), the time t decreases monotonically from \(\infty \) to \(t_0\) to \(- \infty \), first as \(\frac{1}{m} \), then linearly as \(- \frac{m}{A^2} \), and then as \(\frac{1}{m - 2 m_*} \).

Appendix C: Bi-anisotropic solutions when only \(\in ({\mathbf {A, \; A + 2}}\Delta )\)

During \(t_b> t > t_e \), let m(t) lie in the interval \((A, \; A + 2 \Delta )\) and let \(\tilde{m} (t)\) lie in \((0, \; A)\) or in \((A + 2 \Delta , \; 2 m_*) \). Then \(f = A\), \(\; g = X = 0\), \(\; \tilde{f} = c \tilde{m} + c_0\) where \((c, \; c_0) = (1, \; 0)\) or \((- 1, \; 2 m_*)\), \(\; \tilde{g} = c \), and \(\tilde{X} = c \left( (\tilde{n} - 1) \tilde{f} + n A \right) \). The times \(t_b\) and \(t_e\) are defined by the equalities in the following expressions for the values of \(\tilde{m}\) and m at \(t_b\) and \(t_e \) :

$$\begin{aligned}&\tilde{m}_b \;< \; A , \quad m_b \; = \; A \nonumber \\&\tilde{m}_e \; = \; A , \quad A \;< \; m_e \;< \; A + 2 \Delta \nonumber \\&or \; \; \; \; \; \; \tilde{m}_b \; = \; A + 2 \Delta ,\,\, A \;< \; m_b \; < \; A + 2 \Delta \nonumber \\&\tilde{m}_e \; > \; A + 2 \Delta , \quad m_e \; = \; A + 2 \Delta . \end{aligned}$$
(81)

Several equations are different if \(\tilde{n} > 1\) or \(\tilde{n} = 1 \). Hence we consider these two cases seperately.

1.1 \(\tilde{\mathbf {n}} > \mathbf {1}\)

Define \(y, \; z\), and a by

$$\begin{aligned} y = (\tilde{n} - 1) \; \tilde{f} + n \; A, \; \; \; z = (m - \tilde{m}) , \; \; \; a = \sqrt{\frac{n \; (d - 1)}{\tilde{n}}} \; A . \end{aligned}$$
(82)

Note that \(\tilde{X} = c y \) and that \(n A< y < (d - 1) A \). After some algebra, it follows from Eqs. (28) and (29) that

$$\begin{aligned} \frac{\rho }{\rho _{qm}}= & {} \frac{\tilde{n}}{\tilde{n} - 1} \left( y^2 - a^2 \right) \end{aligned}$$
(83)
$$\begin{aligned} y_t= & {} - \; c_y \; (y^2 - a^2) \end{aligned}$$
(84)
$$\begin{aligned} z_t + b \; y \; z= & {} - \; c_z \; (y^2 - a^2) \end{aligned}$$
(85)

where

$$\begin{aligned} c_y \; = \; \frac{\tilde{n} \; c \; \left( \frac{2}{d - 1} - \tilde{v} \right) }{2 \; \gamma \lambda _{qm}}, \; \; \; c_z \; = \; \frac{\tilde{n} \; (\tilde{v} - v)}{2 \; (\tilde{n} - 1) \; \gamma \lambda _{qm}}, \; \; \; b \; = \; \frac{\tilde{n} \; c}{(d - 1) \; \gamma \lambda _{qm}} . \end{aligned}$$

The solutions y(t) and z(y) are given in Eqs. (45) and (46). Since \(X = 0\), it follows that \(\Lambda _t -\lambda _t = 0\) and hence, from Eqs. (32), (34), and (83), that

$$\begin{aligned} (\tilde{\lambda } - \tilde{\lambda }_0)= & {} - \; \left( \frac{n - 1}{\tilde{n}} \right) \; (\lambda - \lambda _0) \nonumber \\ e^{(2 \; - \; (d - 1) \; \tilde{v}) \; (\lambda _b - \lambda )}= & {} \frac{\rho }{\rho _b} \; = \; \frac{y^2 - a^2}{y^2_b - a^2} . \end{aligned}$$
(86)

1.2 \( \tilde{\mathbf {n}} = \mathbf {1} \)

Now \(d = n + 1 \). Define y and z by

$$\begin{aligned} y = 2 \; \tilde{f} + (n - 1) \; A, \; \; \; z = (m - \tilde{m}) . \end{aligned}$$
(87)

Note that \(\; \tilde{X} = n c A \) and that \((n - 1) A< y < (n + 1) A \). After some algebra, it follows from Eqs. (28)–(29) that

$$\begin{aligned} \frac{\rho }{\rho _{qm}}= & {} n A \; y \end{aligned}$$
(88)
$$\begin{aligned} y_t= & {} 2 c \; \gamma \lambda _{qm} \kappa ^2 \; \left( \tilde{v} - \frac{2}{d - 1} \right) \; \rho \end{aligned}$$
(89)
$$\begin{aligned} z_t \; + \; \frac{n c \; A \; z}{(d - 1) \; \gamma \lambda _{qm}}= & {} \gamma \lambda _{qm} \kappa ^2 \; (v - \tilde{v}) \; \rho . \end{aligned}$$
(90)

Eqs. (88)–(90) lead to the solutions y(t) and z(y) given by

$$\begin{aligned} y \; = \; y_b \; e^{ - \frac{n c \; A }{ \gamma \lambda _{qm}} \; \left( \frac{2}{d - 1} - \tilde{v} \right) \; (t - t_b)} \end{aligned}$$
(91)

and

$$\begin{aligned} z \; = \; y^s \; \left( \frac{z_b}{y^s_b} \; + \; \sigma \; \; \int _{y_b}^y \; \frac{d y}{y^s} \right) . \end{aligned}$$
(92)

where \(s = \frac{1}{2 - (d - 1) \; \tilde{v}} \) and \(\sigma = \frac{(d - 1) \; (\tilde{v} - v)}{2 c \; \left( 2 - (d - 1) \; \tilde{v} \right) } \). Thus, if \(\tilde{v} < \frac{2}{d - 1}\) then \(y_t < 0 \) and y increases monotonically from \(y_b\) to \(\infty \) as t decreases from \(t_b\) to \( - \infty \). Also, Eq. (86) give \(\tilde{\lambda }\) and \(\lambda \) in terms of y.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rama, S.K. Non singular M theory universe in loop quantum cosmology—inspired models. Gen Relativ Gravit 51, 75 (2019). https://doi.org/10.1007/s10714-019-2556-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2556-8

Keywords

Navigation