Skip to main content
Log in

Examining the Kerr metric through wave fronts of null geodesics

  • Editor’s Choice
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We examine the singularities of the wave fronts of null geodesics from point sources in the Kerr metric. We find that the wave fronts develop a tube like structure that collapses non-symmetrically, leading to cusp features in the wave front singularities. As the wave front advances, the cusps trace out an astroidal shaped caustic tube, which had been discovered previously using lens mapping and geodesic deviation methods. Thus, the wave front approach in this study helps to complete a picture of caustics and gravitational lensing in the Kerr geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Newman, E.T., Penrose, R.: J. Math. Phys. 3, 566–78 (1962)

    Article  ADS  Google Scholar 

  2. Everitt, et al.: Phys. Rev. Lett. 106(22), 221101 (2011)

    Article  ADS  Google Scholar 

  3. Mizuno, Y., et al.: Nat. Astron. 2, 585–590 (2018)

    Article  ADS  Google Scholar 

  4. Ehlers, J., Newman, E.T.: J. Math. Phys. 41, 3344–3378 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  5. Frittelli, S., Petters, A.O.: Math. Phys. 43, 5578–5611 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  6. Petters, A.O., Levine, H., Wambsganss, J.: Singularity Theory and Gravitational Lensing. Progress in Mathematical Physics (Book 21). Birkhauser, Basel (2001)

    Book  Google Scholar 

  7. Virbhadra, K.S., Ellis, G.F.R.: Phys. Rev. D 62, 084003 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  8. Frittelli, S., Kling, T.P., Newman, E.T.: Phys. Rev. D 61, 064021 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  9. Perlick, V.: Living Rev. Relativity 7, 9. http://www.livingreviews.org/lrr-2004-9 cited on (February 13, 2019)

  10. Bozza, V.: Phys. Rev. D 67, 103006 (2003)

    Article  ADS  Google Scholar 

  11. Soreno, M.: Phys. Rev. D 67, 064007 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  12. Aazami, A., Keeton, C., Petters, A.O.: J. Math. Phys. 52, 092502 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  13. Porfyriadis, A., Shi, Y., Strominger, A.: Phys. Rev. D 95, 064009 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. Rauch, K., Blandford, R.: Astrophys. J. 421(1), 46–68 (1994)

    Article  ADS  Google Scholar 

  15. Sereno, M., De Luca, F.: Phys. Rev. D 78, 023008 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  16. Bozza, V.: Phys. Rev. D 78, 063014 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  17. Grould, M., Paumard, T., Perrin, G.: Astron. Astrophys. 591, A116 (2016)

    Article  ADS  Google Scholar 

  18. Bozza, V., De Luca, F., Scarpetta, G., Sereno, M.: Phys. Rev. D 72, 083003 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  19. Frutos-Alfaro, F., Grave, F., Müller, T., Adis, D.: J. Mod. Phys. 3, 1882–1890 (2012)

    Article  Google Scholar 

  20. Hawking, S., Ellis, G.F.R.: The Large Scale Structure of Space–Time. Cambridge University Press, Cambridge (1973)

    Book  Google Scholar 

  21. Cunningham, C.T., Bardeen, J.M.: Astrophys. J. 173, L137–142 (1972)

    Article  ADS  Google Scholar 

  22. Chandrasekhar, S.: The Mathematical Theory of Black Holes. Clarendon Press, Oxford (1992)

    MATH  Google Scholar 

  23. Carter, B.: Phys. Rev. 174, 1559 (1968)

    Article  ADS  Google Scholar 

  24. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes, 3rd edn. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  25. Arnol’d, V.I.: Catastrophe Theory. Springer, Berlin (1992)

    Book  Google Scholar 

  26. Benavides-Gallego, C., Abdujabbarov, A., Bambi, C.: Eur. Phys. J. C. 78, 678 (2018)

    Article  Google Scholar 

  27. Uniyal, R., Nandan, H., Jetzer, P.: Phys. Lett. B 782, 185–192 (2018)

    Article  ADS  Google Scholar 

  28. Iyer, S.V.: arXiv:1808.06630 [gr-qc]

  29. Jiang, C., Lin, W.: Phys. Rev. D 97, 024045 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  30. Jusuti, K., Ougun, A., Saavedra, J., Gonzalez, P., Vasquez, Y.: Phys. Rev. D 97, 124024 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  31. Cunha, P., Herdeiro, C.: Gen. Relativ. Gravit. 50(4), 42 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

E.G. was supported on this work by an Undergraduate Research Summer Grant from the Adrian Tinsley Program at Bridgewater State University. K.R. and H.W. were supported under two separate NASA Space Grants from the Massachusetts Space Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas P. Kling.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mov 257492 KB)

Supplementary material 2 (mov 122202 KB)

Appendix: Future-directed null geodesics

Appendix: Future-directed null geodesics

Throughout this paper, we have been careful to indicate that the choice of coordinates \((r, \theta , \phi _-, u_-)\) was appropriate for past-directed null geodesics in use with adaptive step-size methods. This is because the null coordinate \(u_-\) is well suited for crossing the event horizon in the past-directed orientation. If one considers the conformal structure of the Kerr solution, as represented in Fig. 17 [20] for example, our light rays are beginning in a standard region I (for sake of argument in a region I on the right). Past directed null geodesics in the \((r, \theta , \phi _-, u_-)\) coordinates smoothly cross the event horizon into the region II (the “white hole”, to the lower left) or approach past null infinity. While one can integrate these coordinates forward in time, they are not well suited for approaching future null infinity or the copy of region II (the “black hole”, to the upper left). In fact, the adaptive step-size code we implement in this paper drives the step-size to zero near the event horizon when using future-directed null geodesics in the \((r, \theta , \phi _-, u_-)\) coordinates.

To compute future-directed null geodesics, it is appropriate to change coordinates to \((r, \theta ,\phi _+,u_+)\) using the coordinate transformation

$$\begin{aligned} du_+= & {} dt + (r^2+a^2) \varDelta ^{-1} dr \end{aligned}$$
(47)
$$\begin{aligned} d\phi _+= & {} d\phi + a \varDelta ^{-1} dr. \end{aligned}$$
(48)

In these coordinates, one can smoothly integrate using adaptive step-size for future-directed null geodesics, reaching future null infinity or the region II corresponding to the “black hole”. The only difference in the mathematics presented in this paper are that the terms in the metric in front of the \(dr d\phi _-\) and \(dr du_-\) change sign. This corresponds to a change in sign of our functions labeled \(T_2\) and \(T_3\) in the Lagrangian and subsequent Euler–Lagrange equations. It is for this reason that we did not simplify our equations by noting that \(T_3=-\,1\) throughout Sect. 3. In our computer code, we have coded for the option of using either coordinate system, where if we want future-directed rays, we use the \(u_+\) and \(\phi _+\) coordinates, and if we want past-directed light rays, we use the \(u_-\) and \(\phi _-\) coordinates.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kling, T.P., Grotzke, E., Roebuck, K. et al. Examining the Kerr metric through wave fronts of null geodesics. Gen Relativ Gravit 51, 32 (2019). https://doi.org/10.1007/s10714-019-2518-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2518-1

Keywords

Navigation