Skip to main content
Log in

The \(SO(3,1) \times U(1)\)-gauge covariant Dirac equation in relativistic magnetars

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Using a perturbative method, we investigate solutions of the Dirac equations for a charged massive spinor field in the background of a magnetar, both in the interior solution and outside the star. A special attention is given to cases where the variables can be separated and the wave function is expressed in terms of the Heun’s general or confluent functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Baade, W., Zwicky, F.: Phys. Rev. 46, 76 (1934)

    Article  ADS  Google Scholar 

  2. Hewish, A., Bell, S.J., Pilkington, J.D.H., Scott, P.F., Collins, R.A.: Nature 217, 709 (1968). https://doi.org/10.1038/217709a0

    Article  ADS  Google Scholar 

  3. Duncan, R., Thompson, C.: ApJ 392, L9 (1992)

    Article  ADS  Google Scholar 

  4. Olausen, S.A., Kaspi, V.M.: Astrophys. J. Suppl. 212, 6 (2014). https://doi.org/10.1088/0067-0049/212/1/6. arXiv:1309.4167 [astro-ph.HE]

    Article  ADS  Google Scholar 

  5. Ciolfi, R.: Astron. Nachr. 335, 624 (2014). https://doi.org/10.1002/asna.201412083. arXiv:1406.7230 [astro-ph.HE]

    Article  ADS  Google Scholar 

  6. Gourgouliatos, K.N., Esposito, P.: arXiv:1805.01680 [astro-ph.HE]

  7. Gomes, R.O., Schramm, S., Dexheimer, V.: arXiv:1805.00341 [astro-ph.HE]

  8. Esposito, P., Rea, N., Israel, G.L.: arXiv:1803.05716 [astro-ph.HE]

  9. Kaspi, V.M., Beloborodov, A.: arXiv:1703.00068 [astro-ph.HE]

  10. Mereghetti, S.: Astron. Astrophys. Rev. 15, 225 (2008). https://doi.org/10.1007/s00159-008-0011-z. arXiv:0804.0250 [astro-ph]

    Article  ADS  Google Scholar 

  11. Turolla, R., Zane, S., Watts, A.: Rep. Prog. Phys. 78(11), 116901 (2015). https://doi.org/10.1088/0034-4885/78/11/116901. arXiv:1507.02924 [astro-ph.HE]

    Article  ADS  Google Scholar 

  12. Colaiuda, A., Ferrari, V., Gualtieri, L., Pons, J.A.: Mon. Not. R. Astron. Soc. 385, 2008 (2080). https://doi.org/10.1111/j.1365-2966.2008.12966.x. arXiv:0712.2162 [astro-ph]

    Article  Google Scholar 

  13. Boquet, M., Bonazzola, S., Novak, J.: Astron. Astrophys. 301, 757 (1995)

    ADS  Google Scholar 

  14. Cardall, C.Y., Prakash, M., Lattimer, L.M.: ApJ 554, 322 (2001)

    Article  ADS  Google Scholar 

  15. Kiuchi, K., Yoshida, S.: Phys. Rev. D 78, 044045 (2008). https://doi.org/10.1103/PhysRevD.78.044045. arXiv:0802.2983 [astro-ph]

    Article  ADS  Google Scholar 

  16. Yazadjiev, S.: Phys. Rev. D 85, 044030 (2012). https://doi.org/10.1103/PhysRevD.85.044030. arXiv:1111.3536 [gr-qc]

    Article  ADS  Google Scholar 

  17. Stelea, C., Dariescu, M.A., Dariescu, C.: Phys. Rev. D 97(10), 104059 (2018). https://doi.org/10.1103/PhysRevD.97.104059. arXiv:1804.08075 [gr-qc]

    Article  ADS  Google Scholar 

  18. Duncan, R., Thompson, C.: ApJ 473, 322 (1996)

    Article  ADS  Google Scholar 

  19. Dariescu, C., Dariescu, M.A., Stelea, C.: Gen. Relativ. Gravit. 49(12), 153 (2017). https://doi.org/10.1007/s10714-017-2314-8

    Article  ADS  Google Scholar 

  20. Bowers, R.L., Liang, E.P.T.: Astrophys. J. 188, 657 (1974)

    Article  ADS  Google Scholar 

  21. Heun, K.: Math. Ann. 33, 161 (1889)

    Article  Google Scholar 

  22. Ronveaux, A. (ed.): Heuns Differential Equations. Oxford University Press, New York (1995)

  23. Slavyanov, S.Y., Lay, W.: Special Functions, A Unified Theory Based on Singularities, Oxford Mathematical Monographs. Oxford University Press, Oxford, UK (2000)

  24. Birkandan, T., Hortasu, M.: EPL 119(2), 20002 (2017). https://doi.org/10.1209/0295-5075/119/20002. arXiv:1704.00294 [math-ph]

    Article  ADS  Google Scholar 

  25. Hortacsu, M.: https://doi.org/10.1142/9789814417532/0002, arXiv:1101.0471 [math-ph]

  26. Ishkhanyan, A.M., Shahverdyan, T.A., Ishkhanyan, T.A.: Thirty five classes of solutions of the quantum time-dependent two-state problem in terms of the general Heun functions. Eur. Phys. J. D 69, 10 (2015)

    Article  ADS  Google Scholar 

  27. Ishkhanyan, A.M., Shahverdyan, T.A., Ishkhanyan, T.A.: Schrodinger potentials solvable in terms of the general Heun functions. Ann. Phys. 388, 456–471 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. Vieira, H.S., Bezerra, V.B.: Annals Phys. 373, 28 (2016). https://doi.org/10.1016/j.aop.2016.06.016. arXiv:1603.02233 [gr-qc]

    Article  ADS  Google Scholar 

  29. Fiziev, P.P.: Class. Quantum Gravity 27, 135001 (2010). https://doi.org/10.1088/0264-9381/27/13/135001. arXiv:0908.4234 [gr-qc]

    Article  ADS  Google Scholar 

  30. Saeedi, K., Zarrinkamar, S., Hassanabadi, H.: Dirac equation with some time-dependent electromagnetic terms. Mod. Phys. Lett. A 31(23), 1650132 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. Hassanabadi, H., Maghsoodi, E., Ikot, A.N., Zarrinkamar, S.: Dirac equation under scalar and vector generalized isotonic oscillators and cornell tensor interaction. Adv. High Energy Phys. 2014, 831938 (2014)

    Google Scholar 

  32. Hassanabadi, H., Maghsoodi, E., Zarrinkamar, S.: Approximate solutions of Dirac equation with a ring-shaped Woods–Saxon potential by Nikiforov–Uvarov method. Chin. Phys. C 37, 113104 (2013)

    Article  ADS  Google Scholar 

  33. Cotaescu, I.I.: Mod. Phys. Lett. A 22, 2493 (2007). https://doi.org/10.1142/S0217732307024437. arXiv:gr-qc/0701119

    Article  ADS  Google Scholar 

  34. Kraniotis, G.V.: arXiv:1801.03157 [gr-qc]

  35. Al-Badawi, A.: Gen. Relativ. Gravit. 50, 16 (2018). https://doi.org/10.1007/s10714-017-2338-0. arXiv:1702.01380 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  36. Wang, M., Herdeiro, C., Jing, J.: Phys. Rev. D 96(10), 104035 (2017). https://doi.org/10.1103/PhysRevD.96.104035. arXiv:1710.10461 [gr-qc]

    Article  ADS  Google Scholar 

  37. Maple 2018. Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario

  38. Saleh, M., Bouetou, B.T., Kofane, T.C.: Astrophys. Space Sci. 361(4), 137 (2016). https://doi.org/10.1007/s10509-016-2725-0. arXiv:1604.00820 [gr-qc]

    Article  ADS  Google Scholar 

  39. Hernandez-Pastora, J.L., Herrera, L., Martin, J.: Class. Quantum Gravity 33(23), 235005 (2016). https://doi.org/10.1088/0264-9381/33/23/235005. arXiv:1607.02315 [gr-qc]

    Article  ADS  Google Scholar 

  40. Herrera, L., Di Prisco, A., Ibez, J., Ospino, J.: Phys. Rev. D 87(2), 024014 (2013). https://doi.org/10.1103/PhysRevD.87.024014. arXiv:1301.2424 [gr-qc]

    Article  ADS  Google Scholar 

  41. Negreiros, R., Bernal, C., Dexheimer, V., Troconis, O.: Universe 4(3), 43 (2018). https://doi.org/10.3390/universe4030043

    Article  ADS  Google Scholar 

  42. Stelea, C., Dariescu, M.A., Dariescu, C.: Axially symmetric stars in Einstein-Maxwell theory (unpublished)

Download references

Acknowledgements

This work was supported by a grant of Ministery of Research and Innovation, CNCS - UEFISCDI, Project Number PN-III-P4-ID-PCE-2016-0131, within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Stelea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dariescu, MA., Dariescu, C. & Stelea, C. The \(SO(3,1) \times U(1)\)-gauge covariant Dirac equation in relativistic magnetars. Gen Relativ Gravit 50, 126 (2018). https://doi.org/10.1007/s10714-018-2449-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-018-2449-2

Keywords

Navigation