Skip to main content
Log in

The Dirac–Hestenes Equation and its Relation with the Relativistic de Broglie–Bohm Theory

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

In this paper we provide using the Clifford and spin-Clifford formalism and some few results of the extensor calculus a derivation of the conservation laws that follow directly from the Dirac–Hestenes equation (DHE) describing a Dirac–Hestenes spinor field (DHSF) in interaction with an external electromagnetic field without using the Lagrangian formalism. In particular, we show that the energy-momentum and total angular momentum extensors of a DHSF is not conserved in spacetime regions permitting the existence of a null electromagnetic field F but a non null electromagnetic potential \(A \). These results have been used together with some others recently obtained (e.g., that the classical relativistic Hamilton–Jacobi equation is equivalent to a DHE satisfied by a particular class of DHSF) to obtain the correct relativistic quantum potential when the Dirac theory is interpreted as a de Broglie–Bohm theory. Some results appearing in the literature on this issue are criticized and the origin of some misconceptions is detailed with a rigorous mathematical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bohm, D., Hiley, B.J.: The Undivided Universe—An Ontological Interpretation of Quantum Theory. Routledge, London (1993)

    Google Scholar 

  2. Chen, P., Kleinert, H.: Bohm Trajectories as Approximations to Properly Fluctuating Quantum Trajectories. arXiv:1308.5021v1 [quant-ph]

  3. Chen, P., Kleinert, H.: Deficiencies of Bohmian Trajectories in View of Basic Quantum Principles. Electron. J. Theor. Phys. 13, 1–12 (2016). http://www.ejtp.com/articles/ejtpv13i35.pdf

  4. de Broglie, L.: Non-Linear Wave Mechanics. A Causal Interpretation. Elsevier, Amsterdam (1960)

    MATH  Google Scholar 

  5. Englert, B.-G., Scully, M.O., Süssmann, G., Walther, H.: Surrealistic Bohm trajectories. Z. Naturforsch. 47A, 1175 (1992)

    ADS  Google Scholar 

  6. Figueiredo, V.L., Rodrigues Jr., W.A., Capelas de Oliveira, E.: Covariant, algebraic and operator spinors (with V. L. Figueiredo and E. C. de Oliveira). Int. J. Theor. Phys. 29, 371–396 (1990)

    Article  MATH  Google Scholar 

  7. Geroch, R.: Spinor structure of space-times in general relativity I. J. Math. Phys. 9, 1739–1744 (1968)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Geroch, R.: Spinor structure of space-times in general relativity. II. J. Math. Phys. 11, 343–348 (1970)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Gurtler, R., Hestenes, D.: Consistency in the formulation of the Dirac, Pauli, and Schrödinger theories. J. Math. Phys. 16, 573–584 (1975)

    Article  ADS  Google Scholar 

  10. Hestenes, D.: Local observables in Dirac theory. J. Math. Phys. 14, 893–905 (1973)

    Article  ADS  Google Scholar 

  11. Hestenes, D.: Observables, operators and complex numbers in classical and quantum physics. J. Math. Phys. 16, 556–572 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  12. Hestenes, D.: Real Dirac theory. In: Keller, J., Oziewicz, Z. (eds.) Proceedings of the International Conference on Theory of the Electron (Mexico City, September 24–27,1995), Adv. Applied Clifford Algbras, vol. 7(S), pp. 97–144 (1997)

  13. Hiley, B.J., Callaghan, R.E.: The Clifford Algebra Approach to Quantum Mechanics B: The Dirac particle and its Relation to Bohm Approach. arXiv:1011.4033v1 [math-ph]

  14. Hiley, B.J., Callaghan, R.E.: Clifford algebras and the Dirac–Bohm quantum Hamilton–Jacobi equation. Found. Phys. 42, 192–208 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Holland, P.R.: The Quantum Theory of Motion. University Press, London (1995)

    MATH  Google Scholar 

  16. Jones, E., Bach, R., Batelaan, H.: Path integrals, matter waves, and the double slit. Eur. J. Phys. 36, 065048 (2015). http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1001&context=physicsbatelaan

  17. Lasenby, A.N., Doran, C.J.L., Gull, S.F.: A multivector derivative approach to Lagrangian field theory. Found. Phys. 23, 1295–1327 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  18. Lounesto, P.: Clifford Algebras and Spinors. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  19. Mahler, D.H., Rozema, L., Fisher, K., Vermeyden, L., Resch, K.J., Wiseman, H.M., Steinberg ,A.: Experimental nonlocal and surreal Bohmian trajectories. Sci. Adv. 2, e1501466 (2016). http://advances.sciencemag.org/content/advances/2/2/e1501466.full.pdf

  20. Moya, A.M.: Lagrangian formalism for multivector fields in spacetime, Ph.D. thesis (in Portuguese), IMECC-UNICAMP (1993)

  21. Rodrigues Jr., W.A., Souza, Q.A.G., Vaz Jr., J.: Lagrangian formulation in the Clifford bundle of Dirac–Hestenes equation on a Riemann–Cartan spacetime. In: Letelier, P., Rodrigues Jr., W.A. (eds.) Gravitation: The Space Time Structure. Proceedings of SILARG VIII (Águas de Lindóia, Brazil, July 25–39, 1993), pp. 534–543. World Sci. Publ, Singapore (1994)

  22. Fernández, V.V., Moya, A.M., Rodrigues Jr., W.A.: Special Supplement of AACA on extensor calculus. Adv. Appl. Clifford Algebras 11(Suppl 3), 1–103 (2001)

  23. Mosna, R.A., Rodrigues Jr., W.A.: The bundles of algebraic and Dirac–Hestenes spinor fields. J. Math. Phys. 45, 2945–2966 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Rodrigues Jr., W.A.: Algebraic and Dirac–Hestenes spinors and spinor fields. J. Math. Phys. 45, 2908–2994 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Rodrigues Jr., W.A., de Oliveira, Capelas, E.: The Many Faces of Maxwell Dirac and Einstein Equations. A Clifford Bundle Approach, Lecture Notes in Physics 922 (second edition revised and enlarged). Springer, Heidelberg (first published as. Lecture Notes in Physics 722, 2007) (2016)

  26. Rodrigues Jr., W.A., Wainer, S.A.: The Relativistic Hamilton–Jacobi Equation for a Massive, Charged and Spinning Particle, its Equivalent Dirac Equation and the de Broglie–Bohm Theory. Adv. Applied Clifford Algebras (2017) (to appear). arXiv:1610.03310v1 [math-ph]

  27. Sawant, R., Samuel, J., Sinha, A., Sinha, S., Sinha, U.: Non-Classical Paths in Interference Experiments. arXiv:1308.2022v2 [quant-ph]

  28. Vaz Jr., J., da Rocha, R.: An Introduction to Clifford Algebras and Spinors. Oxford University Press, Oxford (2016)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel A. Wainer.

Additional information

Communicated by Rafał Abłamowicz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moya, A.M., Rodrigues, W.A. & Wainer, S.A. The Dirac–Hestenes Equation and its Relation with the Relativistic de Broglie–Bohm Theory. Adv. Appl. Clifford Algebras 27, 2639–2657 (2017). https://doi.org/10.1007/s00006-017-0779-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-017-0779-x

Keywords

Navigation