Skip to main content
Log in

Phase transition and thermodynamic stability in extended phase space and charged Hořava–Lifshitz black holes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

For charged black holes in Hořava–Lifshitz gravity, a second order phase transition takes place in extended phase space where the cosmological constant is taken as thermodynamic pressure. We relate the second order nature of phase transition to the fact that the phase transition occurs at a sharp temperature and not over a temperature interval. Once we know the continuity of the first derivatives of the Gibbs free energy, we show that all the Ehrenfest equations are readily satisfied. We study the effect of the perturbation of the cosmological constant as well as the perturbation of the electric charge on thermodynamic stability of Hořava–Lifshitz black hole. We also use thermodynamic geometry to study phase transition in extended phase space. We investigate the behavior of scalar curvature of Weinhold, Ruppeiner, and Quevedo metric in extended phase space of charged Hořava–Lifshitz black holes. It is checked if these curvatures could reproduce the result of specific heat for the phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hawking, S.W.: Nature 248, 30 (1974)

    Article  ADS  Google Scholar 

  2. Bekenstein, J.D.: Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  3. Hawking, S.W., Page, D.N.: Commun. Math. Phys. 87, 577 (1983)

    Article  ADS  Google Scholar 

  4. Witten, E.: Adv. Theor. Math. Phys. 2, 505 (1998)

    Article  MathSciNet  Google Scholar 

  5. Dey, T.K., Mukherji, S., Mukhopadhyay, S., Sarkar, S.: JHEP 04, 014 (2007)

    Article  ADS  Google Scholar 

  6. Myung, Y.S., Kim, Y.W., Park, Y.J.: Phys. Rev. D 78, 084002 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  7. Anninos, D., Pastras, G.: JHEP 07, 030 (2009)

    Article  ADS  Google Scholar 

  8. Carlip, S., Vaidya, S.: Class. Quantum Gravit. 20, 3827 (2003)

    Article  ADS  Google Scholar 

  9. Carter, B.N.M., Neupane, I.P.: Phys. Rev. D 72, 043534 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  10. Fernando, S.: Phys. Rev. D 74, 104032 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  11. Chamblin, A., Emparan, R., Johnson, C.V., Myers, R.C.: Phys. Rev. D 60, 064018 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  12. Chamblin, A., Emparan, R., Johnson, C.V., Myers, R.C.: Phys. Rev. D 60, 104026 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  13. Caldarelli, M.M., Cognola, G., Klemm, D.: Class. Quantum Gravit. 17, 399 (2000)

    Article  ADS  Google Scholar 

  14. Banerjee, R., Modak, S.K., Roychowdhury, D.: JHEP 10, 125 (2012)

    Article  ADS  Google Scholar 

  15. Kastor, D., Ray, S., Traschen, J.: Class. Quantum Gravit. 26, 195011 (2009)

    Article  ADS  Google Scholar 

  16. Dolan, B.P.: Class. Quantum Gravit. 28, 235017 (2011)

    Article  ADS  Google Scholar 

  17. Kubizňák, D., Mann, R.B.: JHEP 07, 033 (2012)

    Article  ADS  Google Scholar 

  18. Gunasekaran, S., Kubizňák, D., Mann, R.B.: JHEP 11, 110 (2012)

    Article  ADS  Google Scholar 

  19. Altamirano, N., Kubizňák, D., Mann, R.B., Sherkatghanad, Z.: Class. Quantum Gravit. 31, 042001 (2014)

    Article  ADS  Google Scholar 

  20. Mo, J.X., Liu, W.B.: Phys. Rev. D 89, 084057 (2014)

    Article  ADS  Google Scholar 

  21. Mo, J.X.: EPL (Europhys. Lett.) 105, 20003 (2014)

    Article  ADS  Google Scholar 

  22. Mo, J.X., Liu, W.B.: Phys. Lett. B 727, 336 (2013)

    Article  ADS  Google Scholar 

  23. Hořava, P.: Phys. Rev. D 79, 084008 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  24. Hořava, P.: JHEP 03, 020 (2009)

    ADS  Google Scholar 

  25. Lu, H., Mei, J., Pope, C.N.: Phys. Rev. Lett. 103, 091301 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  26. Cai, R.G., Cao, L.M., Ohta, N.: Phys. Rev. D 80, 024003 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  27. Kehagias, A., Sfetsos, K.: Phys. Lett. B 678, 123 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  28. Ghodsi, A., Hatefi, E.: Phys. Rev. D 81, 044016 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  29. Myung, Y.S., Kim, Y.W.: Eur. Phys. J. C 68, 265 (2010)

    Article  ADS  Google Scholar 

  30. Castillo, A., Larranaga, A.: Electron. J. Theor. Phys. 8, 83 (2011)

    Google Scholar 

  31. Majhi, B.R.: Phys. Lett. B 686, 49 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  32. Mo, J.X., Zeng, X.X., Li, G.Q., Jiang, X., Liu, W.B.: JHEP 10, 056 (2013)

    Article  ADS  Google Scholar 

  33. Suresh, J., Tharanath, R., Kuriakose, V.C.: JHEP 01, 019 (2015)

    Article  ADS  Google Scholar 

  34. Cao, Q.J., Chen, Y.X., Shao, K.N.: Phys. Rev. D 83, 064015 (2011)

    Article  ADS  Google Scholar 

  35. Majhi, B.R., Roychowdhury, D.: Class. Quantum Gravit. 29, 245012 (2012)

    Article  ADS  Google Scholar 

  36. Sadeghi, J., Jafarzade, K., Pourhassan, B.: Int. J. Thoer. Phys. 51, 3891 (2012)

    Article  Google Scholar 

  37. Jahani Poshteh, M.B., Mirza, B., Oboudiat, F.: Int. J. Mod. Phys. D 24, 1550029 (2015)

    Article  Google Scholar 

  38. Weinhold, F.: J. Chem. Phys. 63, 2479 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  39. Ruppeiner, G.: Phys. Rev. A 20, 1608 (1979)

    Article  ADS  Google Scholar 

  40. Quevedo, H.: J. Math. Phys. 48, 013506 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  41. Mo, J.X.: Astrophys. Space Sci. 356, 319 (2015)

    Article  ADS  Google Scholar 

  42. Brill, D.R., Louko, J., Peldan, P.: Phys. Rev. D 56, 3600 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  43. Prigogine, I., Defay, R.: Chemical Thermodynamics. Longmans, London (1954)

    Google Scholar 

  44. Jäckle, J.: Rep. Prog. Phys. 49, 171 (1986)

    Article  ADS  Google Scholar 

  45. Nieuwenhuizen, T.M.: Phys. Rev. Lett. 79, 1317 (1997)

    Article  ADS  Google Scholar 

  46. Monteiro, R.J.F.: Classical and thermodynamic stability of black holes. arXiv:1006.5358 [hep-th]

  47. Strang, G.: Linear Algebra and its Applications Brooks. Cole Thomson Learning, Inc., Houston (1988)

  48. Salamon, P., Nulton, J.D., Ihrig, E.: J. Chem. Phys. 80, 436 (1984)

    Article  ADS  Google Scholar 

  49. Ruppeiner, G., Chance, J.: J. Chem. Phys. 92, 3700 (1990)

    Article  ADS  Google Scholar 

  50. Brody, D.C., Ritz, A.: J. Geom. Phys. 47, 207 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  51. Dolan, B.P., Johnston, D.A., Kenna, R.: J. Phys. A 35, 9025 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  52. Mirza, B., Mohammadzadeh, H.: Phys. Rev. E 80, 011132 (2009)

    Article  ADS  Google Scholar 

  53. Quevedo, H., Sánchez, A., Taj, S., Vázquez, A.: Gen. Relativ. Gravit. 43, 1153 (2011)

    Article  ADS  Google Scholar 

  54. Mansoori, S.A.H., Mirza, B.: Eur. Phys. J. C 74, 1 (2014)

    Article  Google Scholar 

  55. Schmelzer, J.W., Gutzow, I.: J. Chem. Phys. 70, 184511 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Bagher Jahani Poshteh.

Appendix: Extended Ehrenfest equations

Appendix: Extended Ehrenfest equations

Here, we extend Ehrenfest equations to obtain nine relations between thermodynamic quantities which are true at the point in which the specific heat diverges. Our approach is based on the recently developed method of [37]. We consider the general case of charged extended black holes in an ensemble with fixed charge and pressure. In this ensemble the Gibbs free energy is defined as \(G=H-TS=M-TS\). So, by using the first law (17), we have

$$\begin{aligned} dG=-SdT+VdP+\varPhi dQ. \end{aligned}$$
(51)

So

$$\begin{aligned} S=-\left( \frac{\partial G}{\partial T}\right) _{P,Q}, \qquad V=\left( \frac{\partial G}{\partial P}\right) _{T,Q}, \qquad \varPhi =\left( \frac{\partial G}{\partial Q}\right) _{T,P}. \end{aligned}$$
(52)

Maxwell relations are obtained straightforwardly

$$\begin{aligned} \left( \frac{\partial S}{\partial P}\right) _{T,Q}= & {} -\left( \frac{\partial V}{\partial T}\right) _{P,Q}, \nonumber \\ \left( \frac{\partial S}{\partial Q}\right) _{T,P}= & {} -\left( \frac{\partial \varPhi }{\partial T}\right) _{P,Q}, \nonumber \\ \left( \frac{\partial \varPhi }{\partial P}\right) _{T,Q}= & {} \left( \frac{\partial V}{\partial Q}\right) _{T,P}. \end{aligned}$$
(53)

The first derivatives of the Gibbs free energy are continuous at the divergent point of the specific heat. So, \(S_{1}=S_{2}\), \(V_{1}=V_{2}\), and \(\varPhi _{1}=\varPhi _{2}\), where the indices 1 and 2 denote the state before and after the transition. Then, one can conclude that

$$\begin{aligned} dS_{1}=dS_{2}, \qquad dV_{1}=dV_{2}, \qquad d\varPhi _{1}=d\varPhi _{2}. \end{aligned}$$
(54)

By expressing entropy S as a function of temperature T, pressure P, and charge Q, we would have

$$\begin{aligned} dS=\frac{C_{P,Q}}{T}dT-V\alpha dP-\varPhi \alpha ^{\prime }dQ, \end{aligned}$$
(55)

where we have used the definition of the specific heat \(C_{P,Q}=T(\frac{\partial S}{\partial T})_{P,Q}\), volume expansion coefficient \(\alpha =-\frac{1}{V}(\frac{\partial S}{\partial P})_{T,Q}=\frac{1}{V}(\frac{\partial V}{\partial T})_{P,Q}\), and \(\alpha ^{\prime }=-\frac{1}{\varPhi }(\frac{\partial S}{\partial Q})_{P,T}=\frac{1}{\varPhi }(\frac{\partial \varPhi }{\partial T})_{P,Q}\). Since temperature T, volume V, and electric potential \(\varPhi \) are continuous and \(dS_{1}=dS_{2}\), Eq. (55) gives

$$\begin{aligned} V(\alpha _{2}-\alpha _{1})\left( \frac{dP}{dT}\right) _{S}+\varPhi (\alpha ^{\prime }_{2}- \alpha ^{\prime }_{1})\left( \frac{dQ}{dT}\right) _{S}-\frac{(C_{P,Q})_{2}-(C_{P,Q})_{1}}{T}=0. \end{aligned}$$
(56)

The above equation can be rearranged to yield

$$\begin{aligned} \left( \frac{dP}{dT}\right) _{S}=\frac{(C_{P,Q})_{2}-(C_{P,Q})_{1}}{TV(\alpha _{2}- \alpha _{1})}-\frac{\varPhi (\alpha ^{\prime }_{2}-\alpha ^{\prime }_{1})}{V(\alpha _{2}-\alpha _{1})} \left( \frac{dQ}{dT}\right) _{S}. \end{aligned}$$
(57)

Pressure P can be expressed as a function of T, S, and Q at least in principle, so

$$\begin{aligned} dP=\left( \frac{\partial P}{\partial T}\right) _{S,Q}dT+\left( \frac{\partial P}{\partial S}\right) _{T,Q}dS +\left( \frac{\partial P}{\partial Q}\right) _{T,S}dQ. \end{aligned}$$
(58)

For \(dS=0\) we would obtain

$$\begin{aligned} \left( \frac{dP}{dT}\right) _{S}=\left( \frac{\partial P}{\partial T}\right) _{S,Q}+ \left( \frac{\partial P}{\partial Q}\right) _{T,S}\left( \frac{dQ}{dT}\right) _{S}. \end{aligned}$$
(59)

Comparing this equation with (57) we find the first and second extended Ehrenfest equations

$$\begin{aligned} \left( \frac{\partial P}{\partial T}\right) _{S,Q}= & {} \frac{(C_{P,Q})_{2}-(C_{P,Q})_{1}}{TV(\alpha _{2}-\alpha _{1})}, \end{aligned}$$
(60)
$$\begin{aligned} \left( \frac{\partial P}{\partial Q}\right) _{T,S}= & {} -\frac{\varPhi (\alpha ^{\prime }_{2}- \alpha ^{\prime }_{1})}{V(\alpha _{2}-\alpha _{1})}. \end{aligned}$$
(61)

Equation (56) can also be rearranged to give

$$\begin{aligned} \left( \frac{dQ}{dT}\right) _{S}=\frac{(C_{P,Q})_{2}-(C_{P,Q})_{1}}{T\varPhi (\alpha ^{\prime }_{2}- \alpha ^{\prime }_{1})}-\frac{V(\alpha _{2}-\alpha _{1})}{\varPhi (\alpha ^{\prime }_{2}-\alpha ^{\prime }_{1})} \left( \frac{dP}{dT}\right) _{S}. \end{aligned}$$
(62)

For Q as a function of T, S, and P, one can write, for constant entropy,

$$\begin{aligned} \left( \frac{dQ}{dT}\right) _{S}=\left( \frac{\partial Q}{\partial T}\right) _{S,P}+ \left( \frac{\partial Q}{\partial P}\right) _{T,S}\left( \frac{dP}{dT}\right) _{S}. \end{aligned}$$
(63)

By comparing this equation with (62) we would find the third and fourth extended Ehrenfest equations

$$\begin{aligned} \left( \frac{\partial Q}{\partial T}\right) _{S,P}= & {} \frac{(C_{P,Q})_{2}-(C_{P,Q})_{1}}{T\varPhi (\alpha ^{\prime }_{2}-\alpha ^{\prime }_{1})}, \end{aligned}$$
(64)
$$\begin{aligned} \left( \frac{\partial Q}{\partial P}\right) _{T,S}= & {} -\frac{V(\alpha _{2}-\alpha _{1})}{\varPhi (\alpha ^{\prime }_{2}-\alpha ^{\prime }_{1})}. \end{aligned}$$
(65)

For V as a function of T, P, and Q, we have

$$\begin{aligned} dV=V\alpha dT+V\kappa dP+\varPhi \kappa ^{\prime }dQ, \end{aligned}$$
(66)

where \(\kappa =-\frac{1}{V}(\frac{\partial V}{\partial P})_{T,Q}\) is the isothermal compressibility and \(\kappa ^{\prime }=\frac{1}{\varPhi }(\frac{\partial V}{\partial Q})_{T,P}=\frac{1}{\varPhi }(\frac{\partial \varPhi }{\partial P})_{T,Q}\). Following the same procedure as above and \(dV_{1}=dV_{2}\), we find four other extended Ehrenfest equations

$$\begin{aligned} \left( \frac{\partial P}{\partial T}\right) _{V,Q}= & {} \frac{\alpha _{2}-\alpha _{1}}{\kappa _{2}-\kappa _{1}}, \end{aligned}$$
(67)
$$\begin{aligned} \left( \frac{\partial P}{\partial Q}\right) _{T,V}= & {} \frac{\varPhi (\kappa ^{\prime }_{2}-\kappa ^{\prime }_{1})}{V(\kappa _{2}-\kappa _{1})}, \end{aligned}$$
(68)
$$\begin{aligned} \left( \frac{\partial Q}{\partial T}\right) _{V,P}= & {} -\frac{V(\alpha _{2}-\alpha _{1})}{\varPhi (\kappa ^{\prime }_{2}-\kappa ^{\prime }_{1})}, \end{aligned}$$
(69)
$$\begin{aligned} \left( \frac{\partial Q}{\partial P}\right) _{T,V}= & {} \frac{V(\kappa _{2}-\kappa _{1})}{\varPhi (\kappa ^{\prime }_{2}-\kappa ^{\prime }_{1})}. \end{aligned}$$
(70)

A general expression for \(\varPhi \) as a function of T, Q, and P would give

$$\begin{aligned} d\varPhi =\varPhi \alpha ^{\prime }dT+\varPhi \kappa ^{\prime }dP+\varPhi \chi dQ, \end{aligned}$$
(71)

in which we have used \(\chi =\frac{1}{\varPhi }(\frac{\partial \varPhi }{\partial Q})_{T,P}\). By the same calculations we find the following equations

$$\begin{aligned} \left( \frac{\partial P}{\partial T}\right) _{\varPhi ,Q}= & {} -\frac{\alpha ^{\prime }_{2}-\alpha ^{\prime }_{1}}{\kappa ^{\prime }_{2}-\kappa ^{\prime }_{1}}, \end{aligned}$$
(72)
$$\begin{aligned} \left( \frac{\partial P}{\partial Q}\right) _{T,\varPhi }= & {} -\frac{\chi _{2}-\chi _{1}}{\kappa ^{\prime }_{2}-\kappa ^{\prime }_{1}}, \end{aligned}$$
(73)
$$\begin{aligned} \left( \frac{\partial Q}{\partial T}\right) _{\varPhi ,P}= & {} -\frac{\alpha ^{\prime }_{2}-\alpha ^{\prime }_{1}}{\chi _{2}-\chi _{1}}, \end{aligned}$$
(74)
$$\begin{aligned} \left( \frac{\partial Q}{\partial P}\right) _{T,\varPhi }= & {} -\frac{\kappa ^{\prime }_{2}-\kappa ^{\prime }_{1}}{\chi _{2}-\chi _{1}}. \end{aligned}$$
(75)

Not all of the twelve equations we have obtained, are independent. In fact Eqs. (65), (70), and (75) are respectively the reverse of (61), (68), and (73). Therefore, a total of nine independent extended Ehrenfest equations in canonical ensemble remain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poshteh, M.B.J., Riazi, N. Phase transition and thermodynamic stability in extended phase space and charged Hořava–Lifshitz black holes. Gen Relativ Gravit 49, 64 (2017). https://doi.org/10.1007/s10714-017-2227-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-017-2227-6

Keywords

Navigation