Skip to main content
Log in

A causal viscous cosmology without singularities

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

An isotropic and homogeneous cosmological model with a source of dark energy is studied. That source is simulated with a viscous relativistic fluid with minimal causal correction. In this model the restrictions on the parameters coming from the following conditions are analized: (a) energy density without singularities along time, (b) scale factor increasing with time, (c) universe accelerated at present time, (d) state equation for dark energy with “w” bounded and close to −1. It is found that those conditions are satisfied for the following two cases. (i) When the transport coefficient (\(\tau _{\Pi }\)), associated to the causal correction, is negative, with the additional restriction \(\zeta \left| \tau _{\Pi }\right| >2/3\), where \(\zeta \) is the relativistic bulk viscosity coefficient. The state equation is in the “phantom” energy sector. (ii) For \(\tau _{\Pi }\) positive, in the “k-essence” sector. It is performed an exact calculation for the case where the equation of state is constant, finding that option (ii) is favored in relation to (i), because in (ii) the entropy is always increasing, while this does no happen in (i).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sahni, V.: Dark Matter and Dark Energy. preprint arXiv:astro-ph/0403324 (2004)

  2. Sahni, V., Papantonopoulos, E. (eds.): The Physics of the Early Universe. Springer, New York (2005)

    Google Scholar 

  3. Padmanabhan, T.: Curr. Sci. 88(7), 1057 (2005)

    ADS  Google Scholar 

  4. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  5. Riess, A.G., et al.: Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  6. Caldwell, R.R., Kamionkowski, M., Weinberg, N.: Phys. Rev. Lett. 91, 071301 (2003)

    Article  ADS  Google Scholar 

  7. Nakamura, K., et al.: Particle group collaboration. J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  8. Copeland, E.J., Sami, M., Tsujikawa, S.: Int. J. Modern Phys. D 15(11), 1753–1935 (2006)

    Article  ADS  Google Scholar 

  9. Nojiri, S., Odintsov, S.D., Tsujikawa, S.: Phys. Rev. D 71, 063004 (2005)

    Article  ADS  Google Scholar 

  10. Nojiri, S., Odintsov, S.D.: Phys. Rev. D 70, 103522 (2004)

    Article  ADS  Google Scholar 

  11. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge Univ. Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  12. Fabris, J.C., Gonçalves, S.V.B., de Sá Ribero, R.: Gen. Relativ. Gravit. 38(3), 495–506 (2006)

    Article  ADS  Google Scholar 

  13. Eckart, C.: Phys. Rev. 58, 919 (1940)

    Article  ADS  Google Scholar 

  14. Landau, L.D., Lifshitz, E.M.: Course of theoretical physics. In: Fluid Mechanics. vol. 6, 2nd edn. Pergamon Press, Oxford (1987)

  15. Murphy, G.L.: Phys. Rev. D 8, 4231 (1973)

    Article  ADS  Google Scholar 

  16. Zimdahl, W.: Int. J. Geom. Methods Modern Phys. 11(2), 1460014 (2014)

    Article  MathSciNet  Google Scholar 

  17. Brevik, I., Gr\({\emptyset }\)n, Ø.: Astrophys. Space Sci. 347, 399–404 (2013)

  18. Lima, J.A.S., Germano, A.S.M.: Phys. Lett. A 170, 373–378 (1992)

    Article  ADS  Google Scholar 

  19. Hiscock, W.A., Lindblom, L.: Ann. Phys. 151, 466–496 (1983)

    Article  ADS  Google Scholar 

  20. Dolgov, A.D., Novikov, I.D.: Phys. Lett. B 442(1–4), 82–89 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  21. Liberati, S., Sonego, S., Visser, M.: Ann. Phys. 298, 167–185 (2002)

    Article  ADS  Google Scholar 

  22. Israel, W., Stewart, J.M.: Ann. Phys. 118, 341–372 (1979)

    Article  ADS  Google Scholar 

  23. Romatschke, P.: Int. J. Mod. Phys. E 19, 1–53 (2010)

    Article  ADS  Google Scholar 

  24. Koide, T., et al.: Phys. Rev. C 75, 034909 (2007)

    Article  ADS  Google Scholar 

  25. Romatschke, P.: Class. Quant. Gravit. 27, 025006 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  26. Maartens, R.: Causal Thermodynamics in Relativity. preprint arXiv:astro-ph/9609119 (1996)

  27. Maartens, R.: Hanno Rund Workshop on Relativity and Thermodynamics, Natal (1996)

  28. Landau, L.D., Lifshitz, E.M.: Course of theoretical physics. In: The Classical Theory of Fields, vol. 2, 4th edn. Elsevier, Oxford (1994)

  29. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W.H. Freeman and Company, San Francisco (1973)

    Google Scholar 

  30. Israel, W.: Ann. Phys. 100, 310–331 (1976)

    Article  ADS  Google Scholar 

  31. Israel, W., Stewart, J.M.: Phys. Lett. A 58(4), 213–215 (1976)

    Article  ADS  Google Scholar 

  32. Frampton, P.H., Ludwick, K.J., Scherrer, R.J.: Phys. Rev. D 84, 063003 (2011)

    Article  ADS  Google Scholar 

  33. Beltran Jimenez, J., Lazkoz, R., Saez-Gomez, D., Salzano, V.: Eur. Phys. J. C76(11), 631 (2016)

    Article  ADS  Google Scholar 

  34. Nojiri, S., Odintsov, S.D., Oikonomou, V.K.: arXiv:1506.03307 [gr-qc] (2015)

  35. Brevik, I., Elizalde, E., Nojiri, S., Odintsov, S.D.: Phys. Rev. D 84, 103508 (2011)

    Article  ADS  Google Scholar 

  36. Castagnino, M., Laciana, C.: Class. Quant. Gravit. 19, 2657–2670 (2002)

    Article  ADS  Google Scholar 

  37. Nojiri, S., Odintsov, S.D.: Phys. Rev. D 72, 023003 (2005)

    Article  ADS  Google Scholar 

  38. Chavanis, P.H.: Phys. Lett. B. 758, 59–66 (2016)

    Article  ADS  Google Scholar 

  39. Donato, F., et al.: Mon. Not. R. Astron. Soc. 397, 1169 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank Olimpia Lombardi for her critically reading and her comments on the manuscript. This research was supported by the University of Buenos Aires grant: UBACyT-01/Q710.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos E. Laciana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laciana, C.E. A causal viscous cosmology without singularities. Gen Relativ Gravit 49, 62 (2017). https://doi.org/10.1007/s10714-017-2215-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-017-2215-x

Keywords

Navigation