Skip to main content
Log in

Viscous holographic dark energy cosmological model in general relativity

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this article, we analyze Marder-type space-time in the framework of general relativity theory, with viscous holographic dark energy. To solve the field equations, we use the shear scalar \((\sigma )\) is proportional to the expansion scalar \((\theta )\) which leads to a relation between metric potentials and hybrid expansion law (HEL) proposed by Akarsu et al. (J Cosmol Astropart Phys 01:022, 2014). Also, we determine the cosmological parameters, namely the deceleration parameter(q), jerk parameter (j), statefinder parameters \((r-s)\), equation of state parameter (\(\omega _{\text {de}}\)) and \(\omega _{\text {de}}-\omega '_{\text {de}}\) plane for the obtained model. The derived model supports the accelerating behavior of the Universe along with the null, weak and dominant energy conditions that are obeyed by violating strong energy condition as per the present accelerated expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A G Riess et al Astrophys. J. 116 1009 (1988)

    Google Scholar 

  2. S Perlmutter et al Astrophys. J. 517 567 (1999)

    ADS  Google Scholar 

  3. S M Carroll Living Rev. Relativ 4 1 (2001)

    ADS  Google Scholar 

  4. S Weinberg Rev. Mod. Phys. 61 1 (1989)

    ADS  Google Scholar 

  5. P J E Peebles and B Ratra Rev. Mod. Phys. 75 559 (2003)

    ADS  Google Scholar 

  6. E J Copeland et al Int. J. Mod. Phys. D 15 1753 (2006)

    ADS  Google Scholar 

  7. K Arun et al Adv. Space Res. 60 166 (2017)

    ADS  Google Scholar 

  8. R R Caldwell et al Phys. Rev. Lett. 80 1582 (1998)

    ADS  Google Scholar 

  9. R R Caldwell Phys. Lett. B 545 23 (2002)

    ADS  Google Scholar 

  10. T Padmanabhan and T R Chaudhary Phys. Rev. D 66 081301 (2002)

    ADS  Google Scholar 

  11. B Feng et al Phys. Lett. B 607 35 (2005)

    ADS  Google Scholar 

  12. A Kamenshchik et al Phys. Lett. 511 26 (2001)

    Google Scholar 

  13. B Ratra and P J E Peebles J. Phys. Rev. D 37 321 (1988)

    Google Scholar 

  14. T Chiba et al Phys. Rev. D 62 023511 (2000)

    ADS  Google Scholar 

  15. R G Cai Phys. Lett. B 657 228 (2007)

    ADS  MathSciNet  Google Scholar 

  16. H Wei and R G Cai Phys. Lett. B 660 113 (2008)

    ADS  Google Scholar 

  17. A Cohen et al Phys. Rev. Lett. 82 4971 (1999)

    ADS  MathSciNet  Google Scholar 

  18. M Li Phys. Lett. B 603 1 (2004)

    ADS  Google Scholar 

  19. D Pavón and W Zimdahl Phys. Lett. B 628 206 (2005)

    ADS  Google Scholar 

  20. G ’t Hooft arXiv:gr-qc/9310026 (1993)

  21. L Thorlacius arXiv:hep-th/0404098 (2004)

  22. M Jamil Int. J. Theor. Phys. 49 2829 (2010)

    Google Scholar 

  23. H Wei and S N Zhang Phys. Rev. D 76 063003 (2007)

    ADS  Google Scholar 

  24. L N Granda and A Oliveros Phys. Lett. B 669 275 (2008)

    ADS  Google Scholar 

  25. S P Hatkar et al Astrophys. Space Sci. 365 7 (2020)

    ADS  MathSciNet  Google Scholar 

  26. C P Singh and M Srivastava Indian J. Phys. 95 531 (2021)

    ADS  Google Scholar 

  27. C W Misner Astrophys. J. 151 431 (1968)

    ADS  Google Scholar 

  28. R Maartens arXiv:astro-ph/9609119 (1996)

  29. I Brevik and O Gron Relativistic Universe Models: Recent Advances in Cosmology, (New York: Nova Scientific Publication) p 97 (2013)

    Google Scholar 

  30. A Avelino and U Nucamendi J. Cosmol. Astropart. Phys. 04 06 (2009)

    ADS  Google Scholar 

  31. S Weinberg Gravity Cosmology (New York: Wiley) (1972)

    Google Scholar 

  32. H M Heller et al Astrophys. Space Sci. 20 205 (1973)

    ADS  Google Scholar 

  33. W Zimdahl Phys. Rev. D 53 5433 (1996)

    ADS  Google Scholar 

  34. G L Murphy Phys. Rev. D 8 4231 (1973)

    ADS  Google Scholar 

  35. T Padmanabhan and S M Chitre Phys. Lett. A 120 443 (1987)

    ADS  Google Scholar 

  36. I Brevik and O Gorbunova Gen. Relativ. Gravit. 37 2039 (2005)

    ADS  Google Scholar 

  37. M G Hu and X H Meng Phys. Lett. B 635 186 (2006)

    ADS  MathSciNet  Google Scholar 

  38. C P Singh et al Class. Quantum Gravity 24 455 (2007)

    ADS  Google Scholar 

  39. J R Wilson et al Phys. Rev. D 75 043521 (2007)

    ADS  Google Scholar 

  40. P Kumar and C P Singh Astrophys. Space Sci. 357 120 (2015)

    ADS  Google Scholar 

  41. A Sasidharan and T K Mathew Eur. Phys. J. C 75 348 (2015)

    ADS  Google Scholar 

  42. M Cataldo et al Phys. Lett. B 619 5 (2005)

    ADS  Google Scholar 

  43. L Sebastiani Eur. Phys. J. C 69 547 (2010)

    ADS  Google Scholar 

  44. M R Setare and A Sheykhi Int. J. Mod. Phys. D 19 1205 (2010)

    ADS  Google Scholar 

  45. C J Feng and X Z Li Phys. Lett. B 680 355 (2009)

    ADS  Google Scholar 

  46. G Chakraborty and S Chattopadhyay Int. J. Mod. Phys. D (2019). https://doi.org/10.1142/S0218271820500248

    Article  Google Scholar 

  47. E A Hegazy and F Rahaman Indian J. Phys. 93 1643 (2019)

    ADS  Google Scholar 

  48. P K Sahoo et al Indian J. Phys. 94 2065 (2020)

    ADS  Google Scholar 

  49. V Medina Indian J. Phys. (2020). https://doi.org/10.1007/s12648-020-01959-1

    Article  Google Scholar 

  50. R M Gad and H A Alharbi Indian J. Phys. (2021). https://doi.org/10.1007/s12648-021-02085-2

    Article  Google Scholar 

  51. J Dunkley et al Astrophys. J. Suppl. 180 306 (2009)

    ADS  Google Scholar 

  52. M Tegmark et al Astrophys. J. Suppl. 69 103501 (2004)

    Google Scholar 

  53. C Kömürcü and C Aktas Mod. Phys. Lett. A 2050263 1 (2020)

    Google Scholar 

  54. S Aygün et al J. G. Phys. 62 100 (2012)

    ADS  Google Scholar 

  55. S Aygün et al Astrophys. Space Sci. 361 380 (2016)

    ADS  MathSciNet  Google Scholar 

  56. S Aygün et al Indian J. Phys. (2018). https://doi.org/10.1007/s12648-018-1309-y

    Article  Google Scholar 

  57. A Kabak and S Aygun Int. J. Mod. Phys. 9 50 (2019)

    Google Scholar 

  58. M V Santhi and T Chinnappalanaidu Int. J. Geom. Methods Mod. Phys. 2250211 (2022)

  59. M V Santhi et al Mat. Sta. Eng. App. 71 1056 (2022)

    Google Scholar 

  60. C B Collins et al Gen. Relativ. Gravit. 12 805 (1980)

    ADS  Google Scholar 

  61. O Akarsu et al J. Cosmol. Astropart. Phys. 01 022 (2014)

    ADS  MathSciNet  Google Scholar 

  62. M V Santhi et al Astrophys. Space Sci. 361 142 (2016)

    ADS  Google Scholar 

  63. M V Santhi et al Can. J. Phys. 95 381 (2017)

    ADS  Google Scholar 

  64. B Mishra et al Eur. Phys. J. Plus 132 429 (2017)

    Google Scholar 

  65. A K Yadav et al Mod. Phys. Lett. A 34 19 (2019)

    Google Scholar 

  66. M V Santhi et al J. Phys. Conf. Ser. 1344 012036 (2019)

    Google Scholar 

  67. G P Singh et al Indian J. Phys. 94 127 (2020)

    ADS  Google Scholar 

  68. M V santhi and T Chinnappalanaidu Indian J. Phys. 96 953 (2022)

    ADS  Google Scholar 

  69. A K Yadav et al Phys. Dark Universe 31 100738 (2021)

    Google Scholar 

  70. J V Cunha Phys. Rev. D 79 047301 (2009)

    ADS  Google Scholar 

  71. L Xu et al J. Cosmol. Astropart. Phys. 07 031 (2009)

    ADS  Google Scholar 

  72. M V Santos et al J. Cosmol. Astropart. Phys. 02 066 (2016)

    ADS  Google Scholar 

  73. B S Haridasu et al J. Cosmol. Astropart. Phys. 10 015 (2018)

    ADS  Google Scholar 

  74. T Chiba and T Nakamura Prog. Theor. Phys. 100 1077 (1998)

    ADS  Google Scholar 

  75. M Visser Class. Quantum Gravity 21 2603 (2004)

    ADS  Google Scholar 

  76. V Sahni et al J. Exp. Theor. Phys. Lett. 77 201 (2003)

    Google Scholar 

  77. M Sami et al Phys. Rev. D 86 103532 (2012)

    ADS  Google Scholar 

  78. R Myrzakulov and M Shahalam J. Cosm. Astrop. Phys. 2013 1 (2013)

    Google Scholar 

  79. S Rani et al J. Cosm. Astrophys. Phys. 1503 031 (2015)

    ADS  Google Scholar 

  80. N Aghanim et al., [Plancks Collaboration] (2018) A &A 641 A6 (2020)

  81. R Caldwell and E V Linder Phys. Rev. Lett. 95 141301 (2005)

    ADS  Google Scholar 

  82. P A R Ade et al Astrophysics 571 A16 (2014)

    ADS  Google Scholar 

  83. G Hinshaw et al Astrophys. J. Suppl. Ser. 208 19 (2013)

    ADS  Google Scholar 

  84. A Raychaudhuri Phys. Rev. 98 1123 (1955)

    ADS  MathSciNet  Google Scholar 

  85. M Salti et al Mod. Phys. Lett. A 31 1650185 (2016)

    ADS  MathSciNet  Google Scholar 

  86. P K Sahoo et al Eur. Phys. J. C 77 480 (2017)

    ADS  Google Scholar 

  87. E A Hegazy and F Rahaman Indian J. Phys. 94 1847 (2020)

    ADS  Google Scholar 

  88. A Kumar and C P Singh Pramana J. Phys. 94 129 (2020)

    ADS  Google Scholar 

  89. P Bhar et al Indian J. Phys. 94 1679 (2020)

    ADS  Google Scholar 

  90. B Mishra et al J. Astrophys. Astr. 42 2 (2021)

    ADS  Google Scholar 

  91. B Mishra et al Indian J. Phys. 95 2245 (2021)

    ADS  Google Scholar 

  92. A Aziz et al Indian J. Phys. 95 1581 (2021)

    ADS  Google Scholar 

  93. M R Mollah and K P Singh New Astron. 88 101611 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vijaya Santhi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijaya Santhi, M., Chinnappalanaidu, T., Sudha Rani, N.S.L. et al. Viscous holographic dark energy cosmological model in general relativity. Indian J Phys 97, 1641–1653 (2023). https://doi.org/10.1007/s12648-022-02515-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02515-9

Keywords

Navigation