Skip to main content
Log in

New holographic dark energy model with bulk viscosity in f(R, T) gravity

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we present the bulk viscous phenomena to mimic new holographic dark energy behavior in modified f(R, T) gravity. We assume the bulk viscosity coefficient, \(\zeta\) in the form of \(\zeta = \zeta_{0} + \zeta_{1} H\), where \(\zeta_{0} , \zeta_{1}\) are positive constants and H is the Hubble parameter. We obtain the exact solution of the scale factor and classify all the possible scenarios (deceleration, acceleration and their transition) of the evolution of the Universe. It is observed that the model transits from the decelerated phase to accelerated phase in early or late time depending on the values of viscous terms. For large values of viscous terms, the model always accelerates throughout the evolution. Furthermore, we also analyze two diagnostic parameters, statefinder \(\left\{ {r,s} \right\}\) and Om to discriminate our model with the other existing dark energy models. The evolutions of these diagnostics are shown in \(r - s,r - q\) and Om − z planes. It is found that the behavior of trajectories in different planes depends on the bulk viscous coefficients. A small combination of \(\zeta_{0}\) and \(\zeta_{1}\) gives the quintessence-like behavior, whereas a large combination gives Chaplygin gas-like model. However, the model approaches the ΛCDM model in the late time evolution of the Universe. The value of the effective equation of state parameter comes to be − 0.9745 which is very close to the observational data. The entropy and generalized second law of thermodynamics are valid under certain constraints. The analysis shows that the dark energy phenomena may be explained in the presence of bulk viscosity in the modified theory of gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A G Riess et al [Supernova Search Cosmology Project Collaboration], Astrophys. J. 116 1009 (1998)

  2. S Permutter et al [Supernova Cosmology Project Collaboration], Astrophys. J. 517 565 (1999)

  3. D N Spergel et al Atrophys. J. Suppl. Ser. 148 175 (2003)

    ADS  Google Scholar 

  4. D N Spergel et al Atrophys. J. Suppl. Ser. 170 377 (2007)

    ADS  Google Scholar 

  5. M Tegmark et al Phys. Rev. D 69 103501 (2004)

    ADS  Google Scholar 

  6. G t’Hooft Conf. Proc. C 930308 284 (1993); [gr-qc/9310026]

  7. R Bousso Rev. Mod. Phys. 74 825 (2002)

    ADS  Google Scholar 

  8. A G Cohen, D B Kaplan and A E Nelson Phys. Rev. Lett. 82 4971 (1999)

    ADS  MathSciNet  Google Scholar 

  9. M Li Phys. Lett. B 603 1 (2004)

    ADS  Google Scholar 

  10. S D H Hsu Phys. Lett. B 594 13 (2004)

  11. L Xu, W Li and J Lu Eur. Phys. J. C 60 135 (2009)

    ADS  Google Scholar 

  12. M Li, X D Li, S Wang and X Zhang JCAP 06 036 (2009)

    ADS  Google Scholar 

  13. C Gao, F Wu and X Chen Phys. Rev. D 79 043511 (2009)

    ADS  Google Scholar 

  14. L N Granda, A Oliveros Phys. Lett. B 669 275 (2008)

    ADS  Google Scholar 

  15. Y Wang and L Xu Phys. Rev. D 81 083523 (2010)

    ADS  Google Scholar 

  16. L N Granda and A Oliveros Phys. Lett. B 671 199 (2009)

    ADS  Google Scholar 

  17. K Karami and J Fehri Int. J. Theor. Phys. 49 1118 (2010)

    Google Scholar 

  18. F Yu, J Zhang, J Lu, W Wang and Y Gui Phys. Lett. B 688 263 (2010)

    ADS  Google Scholar 

  19. M Malekjani, A Khodam-Mohammadi and N Nazari-pooya Astrophys. Space Sci. 332 515 (2011)

    ADS  Google Scholar 

  20. J D Barrow Phys. Lett. B 180 335 (1986)

  21. I Brevik and S D Odintsov Phys. Rev. D 65 067302 (2002)

    ADS  MathSciNet  Google Scholar 

  22. I Brevik and O Gorbunova Gen. Relativ. Gravit. 37 2039 (2005)

    ADS  Google Scholar 

  23. D J Liu and X Z Li Phys. Lett. B 611 8 (2005)

    ADS  Google Scholar 

  24. C Eckart Phys. Rev. 58 919 (1940)

    ADS  Google Scholar 

  25. L D Landau and E M Lifshitz Fluid Mechanics (Butterworth Heinemann) (1987)

  26. W Israel and J M Stewart Phys. Lett. 58 A 213 (1976)

    ADS  Google Scholar 

  27. S Nojiri and S D Odintsov Phys. Rev. D 72 023003 (2005)

    ADS  Google Scholar 

  28. S Capozziello, V F Cardone, E Elizalde, S Nojiri and S D Odintsov Phys. Rev. D 73 043512 (2006)

    ADS  Google Scholar 

  29. J Ren and X H Meng Phys. Lett. B 633 1 (2006)

    ADS  Google Scholar 

  30. M G Hu and X H Meng Phys. Lett. B 635 186 (2006)

    ADS  MathSciNet  Google Scholar 

  31. N Cruz, S Lepe and F Pena Phys. Lett. B 646 177 (2007)

    ADS  Google Scholar 

  32. X H Meng, J Ren and M G Hu Commun. Theor. Phys. 47 379 (2007)

    ADS  Google Scholar 

  33. C P Singh, S Kumar and A Pradhan Class. Quantum Gravit. 24 455 (2007)

    ADS  Google Scholar 

  34. C P Singh Pramana J. Phys. 71 33 (2008)

    ADS  Google Scholar 

  35. C J Feng and X Z Li Phys. Lett. B 680 355 (2009)

    ADS  Google Scholar 

  36. Y D Xu, Z G Huang and X H Zhai Astrophys. Space Sci. 337 493 (2012)

    ADS  Google Scholar 

  37. C P Singh and P Kumar Eur. Phys. J. C 74 3070 (2014)

    ADS  Google Scholar 

  38. P Kumar and C P Singh Astrophys. Space Sci. 357 120 (2015)

    ADS  Google Scholar 

  39. J S Gagnon and J Lesgourgues J Cosmol. Astropart. Phys. 09 026 (2011)

    Google Scholar 

  40. S Nojiri and S D Odintsov Phys. Rep. 505 59 (2011)

    ADS  MathSciNet  Google Scholar 

  41. K Bamba, S Capozziello, S Nojiri and S D Odintsov Astrophys. Space Sci. 342 155 (2012)

    ADS  Google Scholar 

  42. T Harko, F S N Lobo, S Nojiri and S D Odintsov Phys. Rev. D 84 024020 (2011)

    ADS  Google Scholar 

  43. M Sharif and M Zubair J. Cosmol. Astropart. Phys. 03 028 (2012)

    ADS  Google Scholar 

  44. S Chakraborty Gen. Relativ. Gravit. 45 2039 (2013)

  45. T Harko Phys. Rev. D 90 044067 (2014)

  46. C P Singh and V Singh Gen. Relativ. Gravit. 46 1696 (2014)

    ADS  Google Scholar 

  47. E H Baffou, A V Kpadonou, M E Rodrigues, M J S Houndjo and J Tossa Astrophys. Space Sci. 356 173 (2015)

    ADS  Google Scholar 

  48. F Adabi, K Karami, F Felegary and Z Azarmi Res. Astron. Astrophys. 12 26 (2012)

  49. K. Karami and K. Fahimi Class. Quantum Grav. 30 065018 (2013)

  50. M Srivastava and C P Singh Astrophys. Space Sci. 363 117 (2018)

    ADS  Google Scholar 

  51. X H Meng and X Dou Commun. Theor. Phys. 52 377 (2009)

    ADS  Google Scholar 

  52. A Avelino, U Nucamendi J. Cos. Astropart. Phys. 08 009 (2010)

    ADS  Google Scholar 

  53. V Sahni, T D Saini, A A Starobinsky and U Alam JETP Lett. 77 201 (2003)

    ADS  Google Scholar 

  54. U Alam, V Sahni, T D Saini and A A Starobinsky Mon. Not. R. Astron. Soc. 344 1057 (2003)

    ADS  Google Scholar 

  55. Y B Wu, S Li, M H Fu and J He Gen. Relativ. Gravity 39 653 (2007)

    ADS  Google Scholar 

  56. D J Liu and W Z Liu Phys. Rev. D 77 027301 (2008)

    ADS  Google Scholar 

  57. C J Feng Phys. Lett. B 670 231 (2008)

  58. V Sahni, A Shafieloo and A A Starobinsky Phys. Rev. D 78 103502 (2008)

    ADS  Google Scholar 

  59. P A R Ade et al. Astron. Astrophys. 594 A13 (2016)

    Google Scholar 

  60. S Weinberg Gravitation and Cosmology: principles and applications of the general theory of relativity, (New York: Wiley) (1972)

  61. G W Gibbons, S W Hawking Phy. Rev. D 15 2738 (1977)

    ADS  MathSciNet  Google Scholar 

  62. T K Mathew, R Aiswarya and K S Vidya Eur. Phys. J. C 73 2619 (2013)

    ADS  Google Scholar 

  63. K Karami, A Sheykhi, N Sahraei and S Ghaffari Europhys. Lett. 93 29002 (2011)

    ADS  Google Scholar 

  64. A Sasidharan, T K Mathew Eur. Phys. J. C 75 348 (2015)

    ADS  Google Scholar 

  65. M R Setare, A Sheykhi Int. J. Mod. Phys. D 19 1205 (2010)

    ADS  Google Scholar 

  66. S F Wu, B Wang, G H Yang and P M Zhang Class. Quantum Grav. 25 235018 (2008)

    ADS  Google Scholar 

  67. M Sharif, M Zubair J. Exper. Theor. Phys. 117 248 (2013)

    ADS  Google Scholar 

  68. D Momeni, P H R S Moraes and R Myrzakulov Atro. Space Sci. 361 228 (2016)

    ADS  Google Scholar 

  69. T K Mathew, M B Aswathy and M Manoj Eur. Phy. J. C 74 3188 (2014)

    ADS  Google Scholar 

  70. E Komatsu et al. Astrophys. J. Suppl. 192 18 (2011)

    ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge our sincere thanks to the referees for their kind comments/suggestions to improve the manuscript. One of the authors MS would like to thank University Grant Commission, India, for providing Senior Research Fellowship (SRF) under UGC-NET scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. P. Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, C.P., Srivastava, M. New holographic dark energy model with bulk viscosity in f(R, T) gravity. Indian J Phys 95, 531–542 (2021). https://doi.org/10.1007/s12648-019-01663-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01663-9

Keywords

PACS No.

Navigation