Skip to main content
Log in

Cosmic acceleration from matter–curvature coupling

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We consider \(f\left( {R,T} \right) \) modified theory of gravity in which, in general, the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar and the trace of the energy–momentum tensor. We indicate that in this type of the theory, the coupling energy–momentum tensor is not conserved. However, we mainly focus on a particular model that matter is minimally coupled to the geometry in the metric formalism and wherein, its coupling energy–momentum tensor is also conserved. We obtain the corresponding Raychaudhuri dynamical equation that presents the evolution of the kinematic quantities. Then for the chosen model, we derive the behavior of the deceleration parameter, and show that the coupling term can lead to an acceleration phase after the matter dominated phase. On the other hand, the curvature of the universe corresponds with the deviation from parallelism in the geodesic motion. Thus, we also scrutinize the motion of the free test particles on their geodesics, and derive the geodesic deviation equation in this modified theory to study the accelerating universe within the spatially flat FLRW background. Actually, this equation gives the relative accelerations of adjacent particles as a measurable physical quantity, and provides an elegant tool to investigate the timelike and the null structures of spacetime geometries. Then, through the null deviation vector, we find the observer area–distance as a function of the redshift for the chosen model, and compare the results with the corresponding results obtained in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. One already knows that the trace of the radiation energy–momentum tensor is zero.

  2. See, e.g., Refs. [54, 55].

  3. Obviously, \(\alpha =0 \) reminds the general relativity, and in the model, the \(\alpha \ne 0\) case corresponds to \(f_T \ne 0 \).

  4. Note that, the focusing of geodesics can also be described by geometrical terms using the Raychaudhuri equation, in particular, it only depends on the deceleration parameter and the physical velocity of the geodesics, see Ref. [77]. Indeed, expressions like relation (56) are known as energy conditions and, as the Weyl tensor is zero for the FLRW metrics, can be derived using the Raychaudhuri equation instead of the GDE, see, e.g. for modified gravity, Refs. [78, 79].

  5. It has been claimed [72] that the Hu–Sawicki models of f(R) theories (i.e., \(f(R) = aR - {m^2}{b{\left( {R/{m^2}} \right) ^n}/\left[ 1 + c{\left( {R/{m^2}} \right) ^n} \right] }\), where a, b and c are dimensionless constants and \({m^2}\) is related to the square of the Hubble parameter) supply a viable cosmological evolution, while these models have been studied in the range of astrophysical and cosmological situations.

References

  1. Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. Perlmutter, S., et al.: [The Supernova Cosmology Project], Measurements of omega and lambda from \(42\) high-redshift supernovae. Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. Riess, A.G., et al.: BV RI light curves for \(22\) type Ia supernovae. Astron. J. 117, 707 (1999)

    Article  ADS  Google Scholar 

  4. Riess, A.G., et al.: Type Ia supernova discoveries at \( z>1\) from the Hubble space telescope: evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607, 665 (2004)

    Article  ADS  Google Scholar 

  5. Ostriker, J.P., Steinhardt, P.J.: Cosmic concordance. arXiv: astro-ph/9505066

  6. Carroll, S.M.: The cosmological constant. Living Rev. Rel. 4, 1 (2001)

    MATH  Google Scholar 

  7. Ade, P.A.R., et al.: [Planck Collaboration], Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571, A16 (2014)

    Article  Google Scholar 

  8. Ade, P.A.R. et al.: [Planck Collaboration], Planck 2015 results. XIII. Cosmological parameters. arXiv:1502.01589

  9. Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Sahni, V.: The cosmological constant problem and quintessence. Class. Quantum Gravity 19, 3435 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Nobbenhuis, S.: Categorizing different approaches to the cosmological constant problem. Found. Phys. 36, 613 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Padmanabhan, H., Padmanabhan, T.: CosMIn: the solution to the cosmological constant problem. Int. J. Mod. Phys. D 22, 1342001 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  13. Bernard, D., LeClair, A.: Scrutinizing the cosmological constant problem and a possible resolution. Phys. Rev. D 87, 063010 (2013)

    Article  ADS  Google Scholar 

  14. Peebles, P.J.E., Ratra, B.: The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Padmanabhan, T.: Cosmological constant-the weight of the vacuum. Phys. Rep. 380, 235 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Polarski, D.: Dark energy: current issues. Ann. Phys. (Berlin) 15, 342 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Durrer, R., Maartens, R.: Dark energy and dark gravity: theory overview. Gen. Relativ. Gravit. 40, 301 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Bamba, K., Capozziello, S., Nojiri, S., Odintsov, S.D.: Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 342, 155 (2012)

    Article  ADS  MATH  Google Scholar 

  20. Bahrehbakhsh, A.F., Farhoudi, M., Vakili, H.: Dark energy from fifth dimensional Brans–Dicke theory. Int. J. Mod. Phys. D 22, 1350070 (2013)

    Article  ADS  MATH  Google Scholar 

  21. Bean, R., Dore, O.: Are chaplygin gases serious contenders for the dark energy? Phys. Rev. D 68, 023515 (2003)

    Article  ADS  Google Scholar 

  22. Multamaki, T., Manera, M., Gaztanaga, E.: Large scale structure and the generalized chaplygin gas as dark energy. Phys. Rev. D 69, 023004 (2004)

    Article  ADS  Google Scholar 

  23. Farajollahi, H., Farhoudi, M., Salehi, A., Shojaie, H.: Chameleonic generalized Brans–Dicke model and late-time acceleration. Astrophys. Space Sci. 337, 415 (2012)

    Article  ADS  MATH  Google Scholar 

  24. Capozziello, S., Cardone, V.F., Carloni, S., Troisi, A.: Curvature quintessence matched with observational data. Int. J. Mod. Phys. D 12, 1969 (2003)

    Article  ADS  Google Scholar 

  25. Nojiri, S., Odintsov, S.D.: Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Methods Mod. Phys. 04, 115 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Amendola, L., Gannouji, R., Polarski, D., Tsujikawa, S.: Conditions for the cosmological viability of \(f(R)\) dark energy models. Phys. Rev. D 75, 083504 (2007)

    Article  ADS  Google Scholar 

  27. Amendola, L., Tsujikawa, S.: Dark Energy: Theory and Observations. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  28. Bahrehbakhsh, A.F., Farhoudi, M., Shojaie, H.: FRW cosmology from five dimensional vacuum Brans–Dicke theory. Gen. Relativ. Gravit. 43, 847 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Chiba, T.: \(1/R\) gravity and scalar–tensor gravity. Phys. Lett. B 575, 1 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Carroll, S.M., Duvvuri, V., Trodden, M., Turner, M.S.: Is cosmic speed-up due to new gravitational physics? Phys. Rev. D 70, 043528 (2004)

    Article  ADS  Google Scholar 

  31. Faraoni, V.: Matter instability in modified gravity. Phys. Rev. D 74, 104017 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  32. Atazadeh, K., Farhoudi, M., Sepangi, H.R.: Accelerating universe in \(f(R)\) brane gravity. Phys. Lett. B 660, 275 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Flanagan, E.E.: Higher order gravity theories and scalar–tensor theories. Class. Quantum Gravity 21, 417 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Sotiriou, T.P.: \(f(R)\) gravity and scalar–tensor theory. Class. Quantum Gravity 23, 5117 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Farhoudi, M.: On higher order gravities, their analogy to GR, and dimensional dependent version of Duff’s trace anomaly relation. Gen. Relativ. Gravit. 38, 1261 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Schmidt, H.-J.: Fourth order gravity: equations, history, and applications to cosmology. Int. J. Geom. Methods Mod. Phys. 4, 209 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. De Felice, A., Tsujikawa, S.: \(f(R)\) theories. Living Rev. Rel. 13, 3 (2010)

    MATH  Google Scholar 

  38. Sotiriou, T.P., Faraoni, V.: \(f(R)\) theories of gravity. Rev. Mod. Phys. 82, 451 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Capozziello, S., De Laurentis, M.: Extended theories of gravity. Phys. Rep. 509, 167 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  40. Capozziello, S., Faraoni, V.: Beyond Einstein Gravity: A Survey of Gravitational Theories for Cosmology and Astrophysics. Springer, London (2011)

    MATH  Google Scholar 

  41. Nojiri, S., Odintsov, S.D.: Unified cosmic history in modified gravity: from \(f(R)\) theory to Lorentz non-invariant models. Phys. Rep. 505, 59 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  42. Clifton, T., Ferreira, P.G., Padilla, A., Skordis, C.: Modified gravity and cosmology. Phys. Rep. 513, 1 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  43. Harko, T.: Modified gravity with arbitrary coupling between matter and geometry. Phys. Lett. B 669, 376 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  44. Harko, T., Lobo, F.S.N., Nojiri, S., Odintsov, S.D.: \(f(R, T)\) gravity. Phys. Rev. D 84, 024020 (2011)

    Article  ADS  Google Scholar 

  45. Bisabr, Y.: Modified gravity with a nonminimal gravitational coupling to matter. Phys. Rev. D 86, 044025 (2012)

    Article  ADS  Google Scholar 

  46. Jamil, M., Momeni, D., Muhammad, R., Ratbay, M.: Reconstruction of some cosmological models in \(f(R, T)\) gravity. Eur. Phys. J. C 72, 1999 (2012)

    Article  ADS  Google Scholar 

  47. Alvarenga, F.G., de la Cruz-Dombriz, A., Houndjo, M.J.S., Rodrigues, M.E., Sáez-Gómez, D.: Dynamics of scalar perturbations in \(f(R, T)\) gravity. Phys. Rev. D 87, 103526 (2013)

    Article  ADS  Google Scholar 

  48. Haghani, Z., Harko, T., Lobo, F.S.N., Sepangi, H.R., Shahidi, S.: Further matters in spacetime geometry: \(f(R, T,{R_{\mu \nu }}{T^{\mu \nu }})\) gravity. Phys. Rev. D 88, 044023 (2013)

    Article  ADS  Google Scholar 

  49. Shabani, H., Farhoudi, M.: \(f(R, T)\) cosmological models in phase space. Phys. Rev. D 88, 044048 (2013)

    Article  ADS  Google Scholar 

  50. Shabani, H., Farhoudi, M.: Cosmological and solar system consequences of \(f(R, T)\) gravity models. Phys. Rev. D 90, 044031 (2014)

    Article  ADS  Google Scholar 

  51. Haghani, Z., Harko, T., Sepangi, H.R., Shahidi, S.: Matter may matter. Int. J. Mod. Phys. D 23, 1442016 (2014)

    Article  ADS  MATH  Google Scholar 

  52. Shabani, H.: Cosmological consequences and statefinder diagnosis of non-interacting generalized chaplygin gas in \(f(R,T)\) gravity. arXiv:1604.04616

  53. Shabani, H., Ziaie, A.H.: Stability of the Einstein static universe in \(f(R,T)\) gravity. arXiv:1606.07959

  54. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)

    Book  MATH  Google Scholar 

  55. Farhoudi, M.: Classical trace anomaly. Int. J. Mod. Phys. D 14, 1233 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Farhoudi, M.: Non-linear Lagrangian theories of gravitation. Ph.D. thesis, Queen Mary and Westfield College, University of London (1995)

  57. Synge, J.L.: On the deviation of geodesics and null-geodesics, particularly in relation to the properties of spaces of constant curvature and indefinite line-element. Ann. Math. 35, 705 (1934). Republished in: Gen. Rel. Grav. 41, 1205 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  58. Pirani, F.A.E.: On the physical significance of the Riemann tensor. Acta Phys. Polon. 15, 389 (1956). Republished in: Gen. Rel. Grav.41, 1215 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  59. Ellis, G.F.R., van Elst, H.: Deviation of geodesics in FLRW spacetime geometries. arXiv:gr-qc/9709060

  60. Szekeres, P.: The gravitational compass. J. Math. Phys. 6, 1387 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman and Company, New York (1973)

    Google Scholar 

  62. Pirani, F.A.E.: Invariant formulation of gravitational radiation theory. Phys. Rev. 105, 1089 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Raychaudhuri, A.: Relativistic cosmology I. Phys. Rev. 98, 1123 (1955)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Mattig, W.: Über den Zusammenhang zwischen Rotverschiebung und scheinbarer Helligkeit (about the relation between redshift and apparent magnitude). Astron. Nachr. 284, 109 (1957)

    Article  ADS  Google Scholar 

  65. Clarkson, C., Ellis, G.F.R., Faltenbacher, A., Maartens, R., Umeh, O., Uzan, J.-P.: (Mis)interpreting supernovae observations in a lumpy universe. Mon. Not. R. Astron. Soc. 426, 1121 (2012)

    Article  ADS  Google Scholar 

  66. Shojai, F., Shojai, A.: Geodesic congruences in the Palatini \(f(R)\) theory. Phys. Rev. D 78, 104011 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Guarnizo, A., Castaneda, L., Tejeiro, J.M.: Geodesic deviation equation in \(f(R)\) gravity. Gen. Relativ. Gravit. 43, 2713 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Guarnizo, A., Castaneda, L., Tejeiro, J.M.: Erratum to: Geodesic Deviation Equation in \( f(R) \) gravity. Gen. Rel. Grav. 47, 109 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Harko, T., Lobo, F.S.N.: Geodesic deviation, Raychaudhuri equation, and tidal forces in modified gravity with an arbitrary curvature–matter coupling. Phys. Rev. D 86, 124034 (2012)

    Article  ADS  Google Scholar 

  70. de la Cruz-Dombriz, A., Dunsby, P.K.S., Busti, V.C., Kandhai, S.: Tidal forces in \(f(R)\) theories of gravity. Phys. Rev. D 89, 064029 (2014)

    Article  ADS  Google Scholar 

  71. Darabi, F., Mousavi, M., Atazadeh, K.: Geodesic deviation equation in \(f(T)\) gravity. Phys. Rev. D 91, 084023 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  72. Hu, W., Sawicki, I.: Models of \(f(R)\) cosmic acceleration that evade solar-system tests. Phys. Rev. D 76, 064004 (2007)

    Article  ADS  Google Scholar 

  73. Friedmann, A.: On space curvature. Z. Phys. 10, 377 (1922)

    Article  ADS  MATH  Google Scholar 

  74. Wald, R.M.: General Relativity. University of Chicago, Chicago (1984)

    Book  MATH  Google Scholar 

  75. d’Inverno, R.: Introducing Einstein’s Relativity. Clarendon Press, Oxford (1992)

    MATH  Google Scholar 

  76. Caceres, D.L., Castaneda, L., Tejeiro, J.M.: Geodesic deviation equation in Bianchi cosmologies. J. Phys. Conf. Ser. 229, 012076 (2010)

    Article  ADS  Google Scholar 

  77. Albareti, F.D., Cembranos, J.A.R., de la Cruz-Dombriz, A.: Focusing of geodesic congruences in an accelerated expanding universe. J. Cosmol. Astropart. Phys. 2012(12), 020 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  78. Santos, J., Alcaniz, J.S., Rebouças, M.J., Carvalho, F.C.: Energy conditions in \(f(R)\)-gravity. Phys. Rev. D 76, 083513 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  79. Albareti, F.D., Cembranos, J.A.R., de la Cruz-Dombriz, A., Dobado, A.: On the non-attractive character of gravity in \(f(R)\) theories. J. Cosmol. Astropart. Phys. 2013(07), 009 (2013)

    Article  MathSciNet  Google Scholar 

  80. Schneider, P., Ehlers, J., Falco, E.E.: Gravitational Lenses. Springer-Verlag, Berlin (1992)

    Google Scholar 

  81. Matravers, D.R., Aziz, A.M.: A note on the observer area–distance formula. Mon. Not. R. Astron. Soc. 47, 124 (1988)

    Google Scholar 

Download references

Acknowledgments

We thank the Research Office of Shahid Beheshti University for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Farhoudi.

Appendix

Appendix

From the definition of the interaction/coupling energy–momentum tensor, Eq. (7), one has

$$\begin{aligned} \kappa {\nabla ^\mu }T_{\mu \nu }^{[{{\mathrm{int}}} ]} = {\nabla ^\mu }\left[ {{f_T}T_{\mu \nu }^{[m]} + \frac{1}{2}\left( {f - R{f_R}} \right) {g_{\mu \nu }} + \left( {{\nabla _\mu }{\nabla _\nu } - {g_{\mu \nu }}} \Box \right) {f_R}} \right] , \end{aligned}$$
(75)

wherein using the definition of Einstein tensor, it reads

$$\begin{aligned} \kappa {\nabla ^\mu }T_{\mu \nu }^{[{{\mathrm{int}}} ]} = {\nabla ^\mu }\left[ {{f_T}T_{\mu \nu }^{[m]} + \frac{f}{2}{g_{\mu \nu }} + {f_R}{G_{\mu \nu }} - {f_R}{R_{\mu \nu }} + \left( {{\nabla _\mu }{\nabla _\nu } - {g_{\mu \nu }}} \Box \right) {f_R}} \right] .\nonumber \\ \end{aligned}$$
(76)

As for any scalar and vector fields, one has \({\nabla _\mu }{\nabla _\nu }\varphi ={\nabla _\nu }{\nabla _\mu }\varphi \) and

$$\begin{aligned} {\nabla _\mu }{\nabla _\nu }{A_\alpha } - {\nabla _\nu }{\nabla _\mu }{A_\alpha } = {R_{\alpha \beta \mu \nu }}{A^\beta }, \end{aligned}$$
(77)

thus, one gets

$$\begin{aligned} {\nabla ^\mu }{\nabla _\mu }{\nabla _\nu }{f_R} = {\nabla ^\mu }{\nabla _\nu }{\nabla _\mu }{f_R} = {\nabla _\nu }{\nabla ^\mu }{\nabla _\mu }{f_R} + R_{\mu \alpha }{}^{\mu }{}_{\nu }{\nabla ^\alpha }{f_R} = {\nabla _\nu }\square {f_R} + {R_{\mu \nu }}{\nabla ^\mu }{f_R}. \end{aligned}$$
(78)

Also, by

$$\begin{aligned} {\nabla _\nu }f\left( {R,T} \right) = {f_R}{\nabla _\nu }R + {f_T}{\nabla _\nu }T \end{aligned}$$
(79)

and

$$\begin{aligned} {\nabla ^\mu }{G_{\mu \nu }} = 0\quad \Rightarrow \quad {\nabla ^\mu }{R_{\mu \nu }} = \frac{1}{2}{\nabla _\nu }R, \end{aligned}$$
(80)

one attains

$$\begin{aligned} \frac{{{g_{\mu \nu }}}}{2}\left( {{\nabla ^\mu }f} \right) - {f_R}\left( {{\nabla ^\mu }{R_{\mu \nu }}} \right) = \frac{1}{2}{f_T}{\nabla _\nu }T. \end{aligned}$$
(81)

Knowing \({\nabla _\mu }{g_{\alpha \beta }} = 0 \), and substituting relations (78) and (81) into relation (76), leads to

$$\begin{aligned} \kappa {\nabla ^\mu }T_{\mu \nu }^{[{{\mathrm{int}}} ]} = T_{\mu \nu }^{[m]}{\nabla ^\mu }{f_T} + {G_{\mu \nu }}{\nabla ^\mu }{f_R} + \frac{1}{2}{f_T}{\nabla _\nu }T \end{aligned}$$
(82)

wherein, with relation (8), it poses some restrictions on the choice of the function of f(RT) on T as

$$\begin{aligned} T_{\mu \nu }^{[m]}{\nabla ^\mu }{f_T} + \frac{1}{2}{f_T}{\nabla _\nu }T=0. \end{aligned}$$
(83)

Note that, such restrictions not only do not contradict with the diffeomorphism invariance of the action (1), but they also arise out of it. That is, the price for a priori inclusion of the trace of the energy–momentum tensor [that itself will emerge from the variation of the Lagrangian of the matter, definition (2)] is to have these restrictions as self-consistency.

Now, writing the result for the index \(\nu =0 \) of the comoving FLRW metrics, it yields

$$\begin{aligned} -T_{00}^{[m]}{\dot{f}_T} + \frac{1}{2}{f_T}{\dot{T}^{[m]}} = 0, \end{aligned}$$
(84)

and by substituting \(T_{00}^{[m]} = {\rho ^{[m]}}\) and \({\dot{T}} = - {\dot{\rho } ^{[m]}} = 3H{\rho ^{[m]}} \), one achieves the constraint Eq. (10).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaregonbadi, R., Farhoudi, M. Cosmic acceleration from matter–curvature coupling. Gen Relativ Gravit 48, 142 (2016). https://doi.org/10.1007/s10714-016-2137-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-016-2137-z

Keywords

Navigation