Skip to main content

Advertisement

Log in

Dark energy and dark gravity: theory overview

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Observations provide increasingly strong evidence that the universe is accelerating. This revolutionary advance in cosmological observations confronts theoretical cosmology with a tremendous challenge, which it has so far failed to meet. Explanations of cosmic acceleration within the framework of general relativity are plagued by difficulties. General relativistic models are nearly all based on a dark energy field with fine-tuned, unnatural properties. There is a great variety of models, but all share one feature in common—an inability to account for the gravitational properties of the vacuum energy. Speculative ideas from string theory may hold some promise, but it is fair to say that no convincing model has yet been proposed. An alternative to dark energy is that gravity itself may behave differently from general relativity on the largest scales, in such a way as to produce acceleration. The alternative approach of modified gravity (or dark gravity) provides a new angle on the problem, but also faces serious difficulties, including in all known cases severe fine-tuning and the problem of explaining why the vacuum energy does not gravitate. The lack of an adequate theoretical framework for the late-time acceleration of the universe represents a deep crisis for theory—but also an exciting challenge for theorists. It seems likely that an entirely new paradigm is required to resolve this crisis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spergel, D.N., et al.: [WMAP Collaboration], Wilkinson Microwave Anisotropy Probe (WMAP) three year results: implications for cosmology. Astrophys. J. 657, 645 (2007) [arXiv:astro-ph/0603449]

  2. Percival, W.J., et al.: The shape of the SDSS DR5 galaxy power spectrum. Astrophys. J. 665, 377 (2007) [arXiv:astro-ph/0608636]

  3. Henry Tye, S.H.: Brane inflation: string theory viewed from the cosmos. arXiv:hep-th/0610221

  4. Kallosh, R.: On inflation in string theory. arXiv:hep-th/0702059

  5. Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang: improved dynamics. Phys. Rev. D 74, 084003 (2006) [arXiv:gr-qc/0607039]

    Google Scholar 

  6. Bojowald, M.: Loop quantum cosmology. Living Rev. Rel. 8,11 (2005) [arXiv:gr-qc/0601085]

  7. Erickson, J.K., Gratton, S., Steinhardt, P.J., Turok, N.: Cosmic perturbations through the cyclic ages. arXiv:hep-th/0607164

  8. Brandenberger, R.H.: String gas cosmology and structure formation: a brief review. arXiv:hep-th/0702001

  9. Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006) [arXiv:hep-th/0603057]

    Google Scholar 

  10. Perivolaropoulos, L.: Accelerating universe: observational status and theoretical implications. arXiv:astro-ph/0601014

  11. Nojiri, S., Odintsov, S.D.: Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Meth. Math. Phys. 4, 115 (2007) [arXiv:hep-th/0601213]

    Google Scholar 

  12. Padmanabhan, T.: Dark Energy: Mystery of the Millennium. AIP Conf. Proc. 861, 179 (2006) [arXiv:astro-ph/0603114]

  13. Straumann, N.: Dark energy: recent developments. Mod. Phys. Lett. A 21, 1083 (2006) [arXiv:hep-ph/0604231]

  14. Bludman, S.: Cosmological acceleration: dark energy or modified gravity? arXiv:astro-ph/0605198

  15. Uzan, J.P.: The acceleration of the universe and the physics behind it. arXiv:astro-ph/0605313

  16. Polarski, D.: Dark energy: beyond general relativity? AIP Conf. Proc. 861, 1013 (2006) [arXiv:astro-ph/0605532]

  17. Ruiz-Lapuente, P.: Dark energy, gravitation and supernovae. Class. Quant. Grav. 24, R91 (2007) [arXiv:0704.1058]

  18. Enqvist, K.: this volume

  19. Goodman, J.: Geocentrism reexamined. Phys. Rev. D52, 1821 (1995) [arXiv:astro-ph/9506068]

  20. Ellis, G.F.R., Maartens, R.: The emergent universe: inflationary cosmology with no singularity. Class. Quant. Grav. 21, 223 (2004) [arXiv:gr-qc/0211082]

  21. Hlozek, R., Cortes, M., Bassett, B.A., Clarkson, C.: this volume

  22. Knop, R.A., et al.: [The Supernova Cosmology Project Collaboration], New constraints on Ω M , ΩΛ, and w from an independent set of eleven high-redshift supernovae observed with HST. Astrophys. J. 598, 102 (2003) [arXiv:astro-ph/0309368]

    Google Scholar 

  23. Wood-Vasey, W.M. et al. Observational Constraints on the Nature of the Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey. arXiv:astro-ph/0701041

  24. Leibundgut, B.: this volume

  25. Nichol, R.: this volume

  26. Sarkar, S.: this volume

  27. Bressi G., Carugno G., Onofrio R. and Ruoso G. (2002). Measurement of the Casimir force between parallel metallic surfaces. Phys. Rev. Lett. 88: 041804

    Article  ADS  Google Scholar 

  28. Bordag, M., Mohideen, U., Mostepanenko, V.M.: New developments in the Casimir effect. Phys. Rept. 353, 1 (2001) [arXiv:quant-ph/0106045]

    Google Scholar 

  29. Padmanabhan, T.: this volume

  30. Bousso, R.: this volume

  31. Linder, E.: this volume

  32. Buchert, T.: this volume

  33. Capozziello, S., Francaviglia, M.: this volume

  34. Koyama, K.: this volume

  35. Ostrogradski M. (1850). Memoire Academie St. Petersbourg, Ser. VI 4: 385

    Google Scholar 

  36. Woodard, R.P.: Avoiding Dark Energy with 1/R Modifications of Gravity (2006) [arXiv:astro-ph/0601672]

  37. Bonvin, C., Caprini, C., Durrer, R.: (2007) [arXiv:0706.1538]

  38. Velo G. and Zwanzinger D. (1969). Propagation and quantization of Rarita–Schwinger waves in an external electromagnetic potential. Phys. Rev. 186: 1337

    Article  ADS  Google Scholar 

  39. Velo G. and Zwanzinger D. (1969). Noncausality and other defects of interaction Lagrangians for particles with spin one and higher. Phys. Rev. 188: 2218

    Article  ADS  Google Scholar 

  40. Morris M.S., Thorne K.S. and Yurtsever U. (1988). Wormholes, time machines and the weak energy condition. Phys. Rev. Lett. 61: 1446

    Article  ADS  Google Scholar 

  41. Gott J.R. (1991). Closed timelike curves produced by pairs of moving cosmic strings: Exact solutions. Phys. Rev. Lett. 66: 1126

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. Ori, A.: Formation of closed timelike curves in a composite vacuum/dust asymptotically-flat spacetime. Phys. Rev. D76, 044002 (2007) [arXiv:gr-qc/0701024]

  43. Bonnor W.B. and Steadman B.R. (2005). Exact solutions of the Einstein–Maxwell equations with closed timelike curves. Gen. Rel. Grav. 37: 1833

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. Babichev, E., Mukhanov, V., Vikman, A.: k-essence, superluminal propagation, causality and emergent geometry. (2007) [arXiv:0708.0561]

  45. Froissart M. (1961). Asymptotic behavior and subtractions in the Mandelstam representation. Phys. Rev. 123: 1053

    Article  ADS  Google Scholar 

  46. Itzykson C. and Zuber J.B. (1980). Quantum Field Theory, Chap. 5. McGraw Hill, New York

    Google Scholar 

  47. Adams, A., Arkani-Hamed, N., Dubovsky, S., Nicolis, A., Rattazzi, R.: Causality, analyticity and an IR obstruction to UV completion. JHEP 0610, 014 (2006) [arXiv:hep-th/0602178]

  48. Polchinski, J.: The cosmological constant and the string landscape. arXiv:hep-th/0603249

  49. Bousso, R.: Precision cosmology and the landscape. arXiv:hep-th/0610211

  50. Padmanabhan, T.: Why does gravity ignore the vacuum energy? Int. J. Mod. Phys. D 15, 2029 (2006) [arXiv:gr-qc/0609012]

  51. Amendola, L., Campos, G.C., Rosenfeld, R.: Consequences of dark matter-dark energy interaction on cosmological parameters derived from SNIa data. (2006) [arXiv:astro-ph/0610806]

  52. Guo, Z.K., Ohta, N., Tsujikawa, S.: Probing the coupling between dark components of the Universe. Phys. Rev. D76, 023508 (2007) [arXiv:astro-ph/0702015]

  53. Armendariz-Picon, C., Mukhanov, V., Steinhardt, P.J.: Dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration. Phys. Rev. Lett. 85 4438 (2000) [arXiv:astro-ph/0004134]

  54. Bonvin, C., Caprini, C., Durrer, R.: A no-go theorem for k-essence dark energy. Phys. Rev. Lett. 97, 081303 (2006) [arXiv:astro-ph/0606584]

    Google Scholar 

  55. Ellis, G., Maartens, R., MacCallum, M.: Causality and the speed of sound. arXiv:gr-qc/0703121

  56. Kunz, M.: The dark degeneracy: on the number and nature of dark components. (2007) [arXiv:astro-ph/0702615]

  57. Kolb, E.W., Matarrese, S., Notari, A., Riotto, A.: Primordial inflation explains why the universe is accelerating today. arXiv:hep-th/0503117

  58. Geshnizjani, G., Chung, D.J.H., Afshordi, N.: Do large-scale inhomogeneities explain away dark energy? Phys. Rev. D 72, 023517 (2005) [arXiv:astro-ph/0503553]

    Google Scholar 

  59. Hirata, C.M., Seljak, U.: Can superhorizon cosmological perturbations explain the acceleration of the universe? Phys. Rev. D 72, 083501 (2005) [arXiv:astro-ph/0503582]

  60. Flanagan, E.E.: Can superhorizon perturbations drive the acceleration of the universe? Phys. Rev. D 71, 103521 (2005) [arXiv:hep-th/0503202]

    Google Scholar 

  61. Rasanen, S.: Backreaction and spatial curvature in a dust universe. Class. Quant. Grav. 23, 1823 (2006) [arXiv:astro-ph/0504005]

    Google Scholar 

  62. Coley, A.A., Pelavas, N., Zalaletdinov, R.M.: Cosmological solutions in macroscopic gravity. Phys. Rev. Lett. 95, 151102 (2005) [arXiv:gr-qc/0504115]

  63. Alnes, H., Amarzguioui, M., Gron, O.: Can a dust dominated universe have accelerated expansion? JCAP 0701, 007 (2007) [arXiv:astro-ph/0506449]

  64. Giovannini, M.: Gradient expansion(s) and dark energy. JCAP 0509, 009 (2005) [arXiv:astro-ph/0506715]

  65. Nambu, Y., Tanimoto, M.: Accelerating universe via spatial averaging. arXiv:gr-qc/0507057

  66. Ishibashi, A., Wald, R.M.: Can the acceleration of our universe be explained by the effects of inhomogeneities? Class. Quant. Grav. 23, 235 (2006) [arXiv:gr-qc/0509108]

    Google Scholar 

  67. Buchert, T.: On globally static and stationary cosmologies with or without a cosmological constant and the dark energy problem. Class. Quant. Grav. 23, 817 (2006) [arXiv:gr-qc/0509124]

    Google Scholar 

  68. Martineau, P., Brandenberger, R.: Back-reaction: a cosmological panacea. arXiv:astro-ph/0510523

  69. Mansouri, R.: Illuminating the dark ages of the universe: the exact backreaction in the SFRW model and the acceleration of the universe. arXiv:astro-ph/0601699

  70. Vanderveld, R.A., Flanagan, E.E., Wasserman, I.: Mimicking dark energy with Lemaitre–Tolman–Bondi models: weak central singularities and critical points. Phys. Rev. D 74, 023506 (2006) [arXiv:astro-ph/0602476]

    Google Scholar 

  71. Moffat, J.W.: Late-time inhomogeneity and the acceleration of the universe. arXiv:astro-ph/0603777

  72. Paranjape, A., Singh, T.P.: The possibility of cosmic acceleration via spatial averaging in Lemaitre–Tolman–Bondi models. Class. Quant. Grav. 23, 6955 (2006) [arXiv:astro-ph/0605195]

    Google Scholar 

  73. Capozziello, S., Carloni, S., Troisi, A.: Quintessence without scalar fields. arXiv:astro-ph/0303041

  74. Amendola, L., Gannouji, R., Polarski, D., Tsujikawa, S.: Conditions for the cosmological viability of f(R) dark energy models. Phys. Rev. D75, 083504 (2007) [arXiv:gr-qc/0612180]

  75. Chiba, T., Smith, T.L., Erickcek, A.L.: Solar System constraints to general f(R) gravity. Phys. Rev. D75, 124014 (2007) [arXiv:astro-ph/0611867]

  76. Dolgov, A.D., Kawasaki, M.: Can modified gravity explain accelerated cosmic expansion? Phys. Lett. B 573, 1 (2003) [arXiv:astro-ph/0307285]

  77. Hu, W., Sawicki, I.: Models of f(R) Cosmic Acceleration that Evade Solar-System Tests. (2007) [arXiv:0705.1158v1]

  78. Starobinsky, A.A.: Disappearing cosmological constant in f(R) gravity. JETP Lett. 86, 157 (2007) [arXiv:0706.2041v2]

  79. Nojiri, S., Odintsov, S.D.: Unifying inflation with LambdaCDM epoch in modified f(R) gravity consistent with Solar System tests. Phys. Lett. B. 657, 238 (2007) [arXiv:0707.1941]

    Google Scholar 

  80. Boisseau, B., Esposito-Farese, G., Polarski, D., Starobinsky, A.A.: Reconstruction of a scalar–tensor theory of gravity in an accelerating universe. Phys. Rev. Lett. 85, 2236 (2000) [arXiv:gr-qc/0001066]

    Google Scholar 

  81. Riazuelo, A., Uzan, J.P.: Cosmological observations in scalar–tensor quintessence. Phys. Rev. D 66, 023525 (2002) [arXiv:astro-ph/0107386]

  82. Esposito-Farese, G.: Tests of scalar–tensor gravity. AIP Conf. Proc. 736, 35 (2004) [arXiv:gr-qc/0409081]

  83. Nesseris, S., Perivolaropoulos, L.: The limits of extended quintessence. Phys. Rev. D 75, 023517 (2007) [arXiv:astro-ph/0611238]

  84. Cavaglia, M.: Black hole and brane production in TeV gravity: a review. Int. J. Mod. Phys. A 18, 1843 (2003) [arXiv:hep-ph/0210296]

    Google Scholar 

  85. Maartens, R.: Brane-world gravity. Living Rev. Rel. 7, 7 (2004) [arXiv:gr-qc/0312059]

  86. Brax, P., van de Bruck, C., Davis, A.C.: Brane world cosmology. Rept. Prog. Phys. 67, 2183 (2004) [arXiv:hep-th/0404011]

    Google Scholar 

  87. Sahni, V.: Cosmological surprises from braneworld models of dark energy. arXiv:astro-ph/0502032

  88. Durrer, R.: Braneworlds. AIP Conf. Proc. 782, 202 (2005) [arXiv:hep-th/0507006]

  89. Langlois, D.: Is our universe brany? Prog. Theor. Phys. Suppl. 163, 258 (2006) [arXiv:hep-th/0509231]

  90. Lue, A.: The phenomenology of Dvali–Gabadadze–Porrati cosmologies. Phys. Rept. 423, 1 (2006) [arXiv:astro-ph/0510068]

  91. Wands, D.: Brane-world cosmology. arXiv:gr-qc/0601078

  92. Dvali, G.R., Gabadadze, G., Porrati, M.: Metastable gravitons and infinite volume extra dimensions. Phys. Lett. B 484, 112 (2000) [arXiv:hep-th/0002190]

    Google Scholar 

  93. Deffayet, C.: Cosmology on a brane in Minkowski bulk. Phys. Lett. B 502, 199 (2001) [arXiv:hep-th/0010186]

  94. Randall, L., Sundrum, R.: An alternative to compactification. Phys. Rev. Lett. 83, 4690 (1999) [arXiv:hep-th/9906064]

    Google Scholar 

  95. Binetruy, P., Deffayet, C., Ellwanger, U., Langlois, D.: Brane cosmological evolution in a bulk with cosmological constant. Phys. Lett. B 477, 285 (2000) [arXiv:hep-th/9910219]

    Google Scholar 

  96. Maartens, R., Majerotto, E.: Observational constraints on self-accelerating cosmology. Phys. Rev. D 74, 023004 (2006) [arXiv:astro-ph/0603353]

  97. Lue, A., Scoccimarro, R., Starkman, G.D.: Probing Newton’s constant on vast scales: DGP gravity, cosmic acceleration and large scale structure. Phys. Rev. D 69, 124015 (2004) [arXiv:astro-ph/0401515]

    Google Scholar 

  98. Lue, A., Starkman, G.: Gravitational leakage into extra dimensions: probing dark energy using local gravity. Phys. Rev. D 67, 064002 (2003) [arXiv:astro-ph/0212083]

    Google Scholar 

  99. Linder, E.V.: Cosmic growth history and expansion history. Phys. Rev. D 72, 043529 (2005) [arXiv:astro-ph/0507263]

  100. Koyama, K., Maartens, R.: Structure formation in the DGP cosmological model. JCAP 0610, 016 (2006) [arXiv:astro-ph/0511634]

  101. Cardoso, A., Koyama, K., Seahra, S.S., Silva, F.P.: Cosmological perturbations in the DGP braneworld: numeric solution. arXiv:0711.2563

  102. Kunz, M., Sapone, D.: Dark energy versus modified gravity. Phys. Rev. Lett. 98, 121301 (2007) [aXiv:astro-ph/0612452]

    Google Scholar 

  103. Gorbunov, D., Koyama, K., Sibiryakov, S.: More on ghosts in DGP model. Phys. Rev. D73, 044016 (2006) [arXiv:hep-th/0512097]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Durrer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durrer, R., Maartens, R. Dark energy and dark gravity: theory overview. Gen Relativ Gravit 40, 301–328 (2008). https://doi.org/10.1007/s10714-007-0549-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-007-0549-5

Keywords

Navigation