Skip to main content
Log in

Essential nature of Newton’s constant in unimodular gravity

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We point out that in unimodular gravity Newton’s constant is an essential coupling, i.e. it is independent of field redefinitions. We illustrate the consequences of this fact by a calculation in a standard simple approximation, showing that in this case the renormalization group flow of Newton’s constant is gauge and parametrization independent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In order to do the functional variation, we can either remember that the linear perturbation must be traceless, and thus straightforwardly obtain the traceless equations (2.3), or we can include the unimodular constraint in the action by means of a Lagrange multiplier and then eliminate the latter from the equations of motion, obtaining of course the same result.

  2. Note that because \(h_\mu ^\mu =0\) we have only two possible ultralocal terms at order \(\epsilon ^2\) instead of the general four discussed in [28].

References

  1. Einstein, A.: Do gravitational fields play an essential part in the structure of the elementary particles of matter? Sitzungsber. Preuss. Akad. Wiss. Berlin Math. Phys. 1919, 433 (1919)

    Google Scholar 

  2. van der Bij, J.J., van Dam, H., Ng, Y.J.: The exchange of massless spin two particles. Physica 116A, 307 (1982)

    ADS  MathSciNet  Google Scholar 

  3. Unruh, W.G.: A unimodular theory of canonical quantum gravity. Phys. Rev. D 40, 1048 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  4. Henneaux, M., Teitelboim, C.: The cosmological constant and general covariance. Phys. Lett. B 222, 195 (1989)

    Article  ADS  Google Scholar 

  5. Alvarez, E.: Can one tell Einstein’s unimodular theory from Einstein’s general relativity? JHEP 03, 002 (2005). arXiv:hep-th/0501146

  6. Smolin, L.: The Quantization of unimodular gravity and the cosmological constant problems, Phys. Rev. D 80, 084003 (2009). arXiv:0904.4841

  7. Ellis, G. F. R., van Elst, H., Murugan, J., Uzan, J.-P.: On the trace-free Einstein equations as a viable alternative to general relativity. Class. Quant. Grav. 28, 225007 (2011). arXiv:1008.1196

  8. Saltas, I. D.: UV structure of quantum unimodular gravity. Phys. Rev. D 90, 124052 (2014). arXiv:1410.6163

  9. Alvarez, E., Gonzalez-Martin, S., Herrero-Valea, M., Martin, C. P.: Unimodular gravity redux. Phys. Rev. D 92(6), 061502 (2015). arXiv:1505.00022

  10. Kuchar, K.V.: Does an unspecified cosmological constant solve the problem of time in quantum gravity? Phys. Rev. D 43, 3332 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  11. Eichhorn, A.: On unimodular quantum gravity. Class. Quant. Grav. 30, 115016 (2013). arXiv:1301.0879

  12. Eichhorn, A.: The renormalization group flow of unimodular f(R) gravity, JHEP 04, 096 (2015). arXiv:1501.05848

  13. Weinberg, S.: Ultraviolet divergences in quantum theories of gravitation. In: Hawking, S.W., Israel, W. (eds.) General Relativity. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  14. Niedermaier, M., Reuter, M.: The asymptotic safety scenario in quantum gravity. Living Rev. Rel. 9, 5 (2006). doi:10.12942/lrr-2006-5

    MATH  Google Scholar 

  15. Reuter, M., Saueressig, F.: Quantum Einstein gravity. New J.Phys. 14, 055022 (2012). arXiv:1202.2274

  16. Falls, K., Litim, D. F., Nikolakopoulos, K., Rahmede, C.: Further evidence for asymptotic safety of quantum gravity. arXiv:1410.4815

  17. Demmel, M., Saueressig, F., Zanusso, O.: A proper fixed functional for four-dimensional quantum Einstein gravity. JHEP 08, 113 (2015). arXiv:1504.07656

  18. Christiansen, N., Knorr, B., Meibohm, J., Pawlowski, J. M., Reichert, M.: Local quantum gravity. arXiv:1506.07016

  19. Percacci, R., Vacca, G. P.: Search of scaling solutions in scalar-tensor gravity. Eur. Phys. J. C 75, 188 (2015). arXiv:1501.00888

  20. Wegner, F.J.: Some invariance properties of the renormalization group. J. Phys. C 7, 2098 (1974)

    Article  ADS  Google Scholar 

  21. Percacci, R., Perini, D.: Should we expect a fixed point for Newton’s constant? Class. Quant. Grav. 21, 5035 (2004). arXiv:hep-th/0401071

  22. Benedetti, D.: Asymptotic safety goes on shell. New J.Phys. 14, 015005 (2012). arXiv:1107.3110

  23. Buchbinder, I.L., Odintsov, S.D., Shapiro, I.L.: Effective action in quantum gravity. IOP, Bristol (1992)

    Google Scholar 

  24. Falls, K.: On the renormalisation of Newton’s constant. arXiv:1501.05331

  25. Gies, H.: Introduction to the functional RG and applications to gauge theories. Lecture Notes Physics 852, 287 (2012). arXiv:hep-ph/0611146

  26. Rosten, O. J.: Fundamentals of the exact renormalization group, Phys. Rept. 511, 177 (2012). arXiv:1003.1366

  27. Dietz, J. A., Morris, T. R.: Redundant operators in the exact renormalisation group and in the f(R) approximation to asymptotic safety. JHEP 07, 064 (2013). arXiv:1306.1223

  28. Gies, H., Knorr, B., Lippoldt, S.: Generalized parametrization dependence in quantum gravity. Phys. Rev. D 92, 084020 (2015). arXiv:1507.08859

  29. Reuter, M.: Nonperturbative evolution equation for quantum gravity. Phys. Rev. D 57, 971 (1998). arXiv:hep-th/9605030

  30. Wetterich, C.: Exact evolution equation for the effective potential. Phys. Lett. B 301, 90 (1993)

    Article  ADS  Google Scholar 

  31. Morris, T.R.: The exact renormalization group and approximate solutions. Int. J. Mod. Phys. A 9, 2411 (1994). arXiv:hep-ph/9308265

  32. Becker, D., Reuter, M.: En route to Background Independence: Broken plit-symmetry, and how to restore it with bi-metric average actions. Ann. Phys. 350, 225 (2014). arXiv:1404.4537

  33. Christiansen, N., Litim, D. F., Pawlowski, J. M., Rodigast, A.: Fixed points and infrared completion of quantum gravity, Phys. Lett. B 728, 114 (2014). arXiv:1209.4038

  34. Codello, A., D’Odorico, G., Pagani, C.: Consistent closure of renormalization group flow equations in quantum gravity. Phys. Rev. D 89, 081701 (2014). arXiv:1304.4777

  35. Benedetti, D., Groh, K., Machado, P. F., Saueressig, F.: The universal RG machine. JHEP 06, 079 (2011). arXiv:1012.3081

  36. Alvarez, E., Faedo, A.F., Lopez-Villarejo, J.J.: Ultraviolet behavior of transverse gravity. JHEP 10, 023 (2008). arXiv:0807.1293

  37. Buchmuller, W., Dragon, N.: Gauge fixing and the cosmological constant. Phys. Lett. B 223, 313 (1989)

    Article  ADS  Google Scholar 

  38. Dou, D., Percacci, R.: The running gravitational couplings. Class. Quant. Grav. 15, 3449 (1998). arXiv:hep-th/9707239

  39. Benedetti, D., Machado, P.F., Saueressig, F.: Taming perturbative divergences in asymptotically safe gravity. Nucl. Phys. B824, 168 (2010). arXiv:0902.4630

  40. Codello, A., Percacci, R., Rahmede, C.: Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation. Ann. Phys. 324, 414 (2009). arXiv:0805.2909

  41. Litim, D. F.: Optimised renormalisation group flows. Phys. Rev. D64, 105007 (2001). arXiv:hep-th/0103195

  42. Anber, M. M., Donoghue, J. F.: On the running of the gravitational constant. Phys. Rev. D85, 104016 (2012). arXiv:1111.2875

  43. Bjerrum-Bohr, N. E. J., Donoghue, J. F., Holstein, B. R.: Quantum gravitational corrections to the nonrelativistic scattering potential of two masses. Phys. Rev. D67, 084033 (2003). arXiv:hep-th/0211072. [Erratum: Phys. Rev.D71,069903(2005)]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Benedetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benedetti, D. Essential nature of Newton’s constant in unimodular gravity. Gen Relativ Gravit 48, 68 (2016). https://doi.org/10.1007/s10714-016-2060-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-016-2060-3

Keywords

Navigation