Skip to main content
Log in

Classical and quantum dynamics of a perfect fluid scalar-energy dependent metric cosmology

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Inspired from the idea of minimally coupling of a real scalar field to geometry, we investigate the classical and quantum models of a flat energy-dependent FRW cosmology coupled to a perfect fluid in the framework of the scalar-rainbow metric gravity. We use the standard Schutz’ representation for the perfect fluid and show that under a particular energy-dependent gauge fixing, it may lead to the identification of a time parameter for the corresponding dynamical system. It is shown that, under some circumstances on the minisuperspace prob energy, the classical evolution of the of the universe represents a late time expansion coming from a bounce instead of the big-bang singularity. Then we go forward by showing that this formalism gives rise to a Schrödinger–Wheeler–DeWitt equation for the quantum-mechanical description of the model under consideration, the eigenfunctions of which can be used to construct the wave function of the universe. We use the resulting wave function in order to investigate the possibility of the avoidance of classical singularities due to quantum effects by means of the many-worlds and Bohmian interpretation of quantum cosmology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. With a straightforward calculation one can show that the variation of this term produces the boundary integral \(-\int _{\partial M}\sqrt{h}\epsilon h^{\alpha \beta }\delta g_{\alpha \beta ,\mu }n^{\mu }d^3y\), where \(n_{\mu }\) is the unit normal to \(\partial M\) and \(\epsilon =n_{\mu }n^{\mu }=\pm 1\), which is exactly equal to the variation of the second term in (7) but with different sign.

  2. It should be noted that while the fluid’s enthalpy depends on the rainbow function \(f_1\) through Eq. (14), its entropy seems to be free of such dependence. However, due to the Bekenstein-Hawking area law which is also applicable to the cosmological horizons, the entropy may also depend on the metric (and so to the rainbow) functions. In this situation, we may absorb all of such dependencies in variable S. This means that in the above discussions, by S we mean a metric dependence function. Finally, by applying of the canonical transformation (18), all information will be delivered to the variable T.

References

  1. Amelino-Camelia, G.: Phys. Lett. B 510, 255 (2001)

    Article  ADS  Google Scholar 

  2. Amelino-Camelia, G.: Int. J. Mod. Phys. D 11, 35 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  3. Amelino-Camelia, G., Kowalski-Glikman, J., Mandanici, G., Procaccini, A.: Int. J. Mod. Phys. A 20, 6007 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  4. Amelino-Camelia, G.: arXiv:gr-qc/0309054 [gr-qc] (2003)

  5. Kowalski-Glikman, J.: Lect. Notes Phys. 669, 131 (2005)

    Article  ADS  Google Scholar 

  6. Magueijo, J., Smolin, L.: Phys. Rev. Lett. 88, 190403 (2002)

    Article  ADS  Google Scholar 

  7. Magueijo, J., Smolin, L.: Phys. Rev. D 67, 044017 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  8. Hackett, J.: Class. Quant. Grav. 23, 3833 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  9. Myers, R.C., Pospelov, M.: Phys. Rev. Lett. 90, 211601 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  10. Jacobson, T., Liberati, S., Mattingly, D.: Phys. Rev. D 66, 081302 (2002)

    Article  ADS  Google Scholar 

  11. Amelino-Camelia, G., Piran, T.: Phys. Rev. D 64, 036005 (2001)

    Article  ADS  Google Scholar 

  12. Coleman, S.R., Glashow, S.L.: Phys. Rev. D 59, 116008 (1999)

    Article  ADS  Google Scholar 

  13. Hayashida, N., Honda, K., Inoue, N., et al.: Astrophys. J. 522, 255 (1999)

    Google Scholar 

  14. Magueijo, J., Smolin, L.: Class. Quant. Grav. 21, 1725 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  15. Garattini, R., Saridakis, E.N.: Eur. Phys. J. C 75(7), 343 (2015)

    Article  ADS  Google Scholar 

  16. Farag Ali, A., Faizal, M., Khalil, M.M.: Nucl. Phys. B 894, 341 (2015)

    Article  ADS  Google Scholar 

  17. Khodadi, M., Heydarzade, Y., Nozari, K., Darabi, F.: Eur. Phys. J. C 75(12), 590 (2015)

    Article  ADS  Google Scholar 

  18. Hendi, S.H., Faizal, M.: Phys. Rev. D 92(4), 044027 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  19. Gim, Y., Kim, W.: JCAP 10, 003 (2014)

    Article  ADS  Google Scholar 

  20. Ali, A.F.: Phys. Rev. D 89, 104040 (2014)

    Article  ADS  Google Scholar 

  21. Barrow, J.D., Magueijo, J.: Phys. Rev. D 88(10), 103525 (2013)

    Article  ADS  Google Scholar 

  22. Amelino-Camelia, G., Arzano, M., Gubitosi, G., Magueijo, J.: Phys. Rev. D 88, 041303 (2013)

    Article  ADS  Google Scholar 

  23. Garattini, R.: JCAP 1306, 017 (2013)

    Article  ADS  Google Scholar 

  24. Awad, A., Ali, A.F., Majumder, B.: JCAP 10, 052 (2013)

    Article  ADS  Google Scholar 

  25. Ling, Y., Wu, Q.: Phys. Lett. B 687, 103 (2010)

    Article  ADS  Google Scholar 

  26. Hendi, S.H., Panahiyan, S., Eslam Panah, B., Momennia, M.: Eur. Phys. J. C 76, 150 (2016)

    Article  ADS  Google Scholar 

  27. Ling, Y.: JCAP 0708, 017 (2007)

    Article  ADS  Google Scholar 

  28. Vakili, B.: Phys. Lett. B 688, 129 (2010)

    Article  ADS  Google Scholar 

  29. Schutz, B.F.: Phys. Rev. D 2, 2762 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  30. Schutz, B.F.: Phys. Rev. D 4, 3559 (1971)

    Article  ADS  Google Scholar 

  31. Majumder, B.: Int. J. Mod. Phys. D 22, 1350079 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  32. Alvarenga, F.G., Fabris, J.C., Lemos, N.A., Monerat, G.A.: Gen. Relativ. Gravit. 34, 651 (2002)

    Article  Google Scholar 

  33. Khodadi, M., Nozari, K., Sepangi, H. R.: arXiv:1602.02921 [gr-qc] (2016)

  34. Alvarenga, F.G., Batista, A.B., Fabris, J.C., Goncalves, S.V.B.: Gen. Relativ. Gravit. 35, 1659 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  35. Garattini, R., Mandanici, G.: Phys. Rev. D 83, 084021 (2011)

    Article  ADS  Google Scholar 

  36. Hawking, S.W., Ellis, G.F.R.: The Large Strucure of Space–Time. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  37. Lapchinski, V.G., Rubakov, V.A.: Theor. Math. Phys. 33, 1076 (1977)

    Article  Google Scholar 

  38. Awad, A.: Phys. Rev. D 87, 103001 (2013)

    Article  ADS  Google Scholar 

  39. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  40. Tipler, F.J.: Phys. Rep. 137, 231 (1986)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Vakili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodadi, M., Nozari, K. & Vakili, B. Classical and quantum dynamics of a perfect fluid scalar-energy dependent metric cosmology. Gen Relativ Gravit 48, 64 (2016). https://doi.org/10.1007/s10714-016-2059-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-016-2059-9

Keywords

Navigation