Skip to main content
Log in

Holographic Schwinger effect in a confining background with Gauss–Bonnet corrections

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study the effect of higher-derivative terms on holographic Schwinger effect by introducing the Gauss–Bonnet term in the gravity sector. Anti-de Sitter soliton background is considered which is dual to confining phase of the boundary field theory. By calculating the potential between the produced pair, we find that larger Gauss–Bonnet factor \(\lambda \) makes the pair lighter. We apply numerical method to calculate the production rate for various cases. The results show that the Gauss–Bonnet term enhances the production rate. The critical behaviors near the two critical values of the electric field are also investigated, and it is found that the two critical indexes are not affected by the Gauss–Bonnet term and thus suggests a possible universality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Heisenberg, W., Euler, H.: Consequences of Dirac’s theory of positrons. Z. Phys. 98, 714 (1936). arXiv:physics/0605038

  2. Schwinger, J.S.: On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Affleck, I.K., Manton, N.S.: Monopole pair production in a magnetic field. Nucl. Phys. B 194, 38 (1982)

    Article  ADS  Google Scholar 

  4. Fradkin, E.S., Tseytlin, A.A.: Quantum string theory effective action. Nucl. Phys. B 261, 1 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bachas, C., Porrati, M.: Pair creation of open strings in an electric field. Phys. Lett. B 296, 77 (1992). arXiv:hep-th/9209032

  6. Maldacena, J.M.: The Large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113 (1999). arXiv:hep-th/9711200 [Adv. Theor. Math. Phys. 2, 231 (1998)]

  7. Gubser, S.S., Klebanov, I.R., Polyakov, A.M.: Gauge theory correlators from noncritical string theory. Phys. Lett. B 428, 105 (1998). arXiv:hep-th/9802109

  8. Witten, E.: Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253 (1998). arXiv:hep-th/9802150

  9. Semenoff, G.W., Zarembo, K.: Holographic Schwinger Effect. Phys. Rev. Lett. 107, 171601 (2011). arXiv:1109.2920 [hep-th]

  10. Gorsky, A.S., Saraikin, K.A., Selivanov, K.G.: Schwinger type processes via branes and their gravity duals. Nucl. Phys. B 628, 270 (2002). doi:10.1016/S0550-3213(02)00095-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Bolognesi, S., Kiefer, F., Rabinovici, E.: Comments on critical electric and magnetic fields from holography. J. High Energy Phys. 1301, 174 (2013). arXiv:1210.4170 [hep-th]

  12. Sato, Y., Yoshida, K.: Holographic description of the Schwinger effect in electric and magnetic fields. J. High Energy Phys. 1304, 111 (2013). arXiv:1303.0112 [hep-th]

  13. Sato, Y., Yoshida, K.: Holographic Schwinger effect in confining phase. J. High Energy Phys. 1309, 134 (2013). arXiv:1306.5512 [hep-th]

  14. Kawai, D., Sato, Y., Yoshida, K.: Schwinger pair production rate in confining theories via holography. Phys. Rev. D 89(10), 101901 (2014). arXiv:1312.4341 [hep-th]

  15. Ghodrati, M.: Schwinger effect and entanglement entropy in confining geometries. Phys. Rev. D 92(6), 065015 (2015). arXiv:1506.08557 [hep-th]

  16. Wu, X.: Notes on holographic Schwinger effect. J. High Energy Phys. 1509, 044 (2015). arXiv:1507.03208 [hep-th]

  17. Witten, E.: Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 2, 505 (1998). arXiv:hep-th/9803131

  18. Horowitz, G.T., Myers, R.C.: The AdS/CFT correspondence and a new positive energy conjecture for general relativity. Phys. Rev. D 59, 026005 (1998). arXiv:hep-th/9808079

  19. Sato, Y., Yoshida, K.: Potential analysis in holographic Schwinger effect. J. High Energy Phys. 1308, 002 (2013). arXiv:1304.7917 [hep-th]

  20. Sato, Y., Yoshida, K.: Universal aspects of holographic Schwinger effect in general backgrounds. J. High Energy Phys. 1312, 051 (2013). arXiv:1309.4629 [hep-th]

  21. Fischler, W., Nguyen, P.H., Pedraza, J.F., Tangarife, W.: Holographic Schwinger effect in de Sitter space. Phys. Rev. D 91, 086015 (2015). arXiv:1411.1787 [hep-th]

  22. Fadafan, K.B., Saiedi, F.: On holographic non-relativistic Schwinger effect. arXiv:1504.02432 [hep-th]

  23. Kawai, D., Sato, Y., Yoshida, K.: A holographic description of the Schwinger effect in a confining gauge theory. Int. J. Mod. Phys. A 30, 1530026 (2015). arXiv:1504.00459 [hep-th]

  24. Buchel, A., Myers, R.C.: Causality of holographic hydrodynamics. J. High Energy Phys. 0908, 016 (2009). arXiv:0906.2922 [hep-th]

  25. Camanho, X.O., Edelstein, J.D.: Causality constraints in AdS/CFT from conformal collider physics and Gauss–Bonnet gravity. J. High Energy Phys. 1004, 007 (2010). arXiv:0911.3160 [hep-th]

  26. Buchel, A., Escobedo, J., Myers, R.C., Paulos, M.F., Sinha, A., Smolkin, M.: Holographic GB gravity in arbitrary dimensions. J. High Energy Phys. 1003, 111 (2010). arXiv:0911.4257 [hep-th]

  27. Cai, R.G., Kim, S.P., Wang, B.: Ricci flat black holes and Hawking–Page phase transition in Gauss–Bonnet gravity and dilaton gravity. Phys. Rev. D 76, 024011 (2007). arXiv:0705.2469 [hep-th]

  28. Cai, R.G.: Gauss–Bonnet black holes in AdS spaces. Phys. Rev. D 65, 084014 (2002). arXiv:hep-th/0109133

  29. Rey, S.J., Yee, J.T.: Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity. Eur. Phys. J. C 22, 379 (2001). arXiv:hep-th/9803001

  30. Maldacena, J.M.: Wilson loops in large N field theories. Phys. Rev. Lett. 80, 4859 (1998). arXiv:hep-th/9803002

  31. Lowenstein, J.H., Swieca, J.A.: Quantum electrodynamics in two-dimensions. Ann. Phys. 68, 172 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  32. Abdalla, E., Abdalla, M.C.B., Rothe, D.: Non-perturbative methods in two-dimensional quantum field theory. World Scientific, Singapore (2001)

    Book  MATH  Google Scholar 

  33. Kogut, J.B., Susskind, L.: Vacuum polarization and the absence of free quarks in four-dimensions. Phys. Rev. D 9, 3501 (1974)

    Article  ADS  Google Scholar 

  34. Rothe, H.J., Rothe, K.D., Swieca, J.A.: Screening versus confinement. Phys. Rev. D 19, 3020 (1979)

    Article  ADS  Google Scholar 

  35. Abdalla, E., Mohayaee, R., Zadra, A.: Screening in two-dimensional QCD. Int. J. Mod. Phys. A 12, 4539 (1997). arXiv:hep-th/9604063

  36. Abdalla, E., Banerjee, R.: Screening in three-dimensional QED. Phys. Rev. Lett. 80, 238 (1998). arXiv:hep-th/9704176

Download references

Acknowledgments

This work has been supported by CNPq (Brazil). SJZ Thanks the warm hospitality of Kavli Institute for Theoretical Physics China (KITPC) where part of the work was performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Jun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, SJ., Abdalla, E. Holographic Schwinger effect in a confining background with Gauss–Bonnet corrections. Gen Relativ Gravit 48, 60 (2016). https://doi.org/10.1007/s10714-016-2056-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-016-2056-z

Keywords

Navigation