Skip to main content
Log in

Testing Chern-Simons modified gravity with orbiting superconductive gravity gradiometers: the non-dynamical formulation

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

High precision superconductivity gravity gradiometers (SGG) are powerful tools for relativistic experiments. In this paper, we work out the tidal signals in non-dynamical Chern-Simons modified gravity, which could be measured by orbiting SGGs around Earth. We find that, with proper orientations of multi-axes SGGs, the tidal signals from the Chern-Simons modification can be isolated in the combined data of different axes. Furthermore, for three-axes SGGs, such combined data is the trace of the total tidal matrix, which is invariant under the rotations of SGG axes and thus free from axis pointing errors. Following nearly circular orbits, the tests of the parity-violating Chern-Simons modification and the measurements of the gravitomagnetic sector in parity-conserving metric theories can be carried out independently in the same time. A first step analysis on noise sources is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Niedermaier, M., Reuter, M.: Living Rev. Relativ. 9, 5 (2006). doi:10.12942/lrr-2006-5

    Article  ADS  Google Scholar 

  2. Deser, S., Jackiw, R., Templeton, S.: Ann. Phys. 140, 372 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  3. Campbell, B.A., Duncan, M.J., Kaloper, N., Olive, K.A.: Phys. Lett. B 251, 34 (1990). doi:10.1016/0370-2693(90)90227-W

    Article  ADS  MathSciNet  Google Scholar 

  4. Campbell, B.A., Duncan, M.J., Kaloper, N., Olive, K.A.: Nucl. Phys. B 351, 778 (1991). doi:10.1016/S0550-3213(05)80045-8

    Article  ADS  MathSciNet  Google Scholar 

  5. Jackiw, R., Pi, S.Y.: Phys. Rev. D 68, 104012 (2003). doi:10.1103/PhysRevD.68.104012

    Article  ADS  MathSciNet  Google Scholar 

  6. Alexander, S., Yunes, N.: Phys. Rep. 480, 1 (2009). doi:10.1016/j.physrep.2009.07.002

    Article  ADS  MathSciNet  Google Scholar 

  7. Smith, T.L., Erickcek, A.L., Caldwell, R.R., Kamionkowski, M.: Phys. Rev. D 77, 024015 (2008). doi:10.1103/PhysRevD.77.024015

    Article  ADS  Google Scholar 

  8. Ciufolini, I., Pavlis, E.: Nature 431, 958 (2004). doi:10.1038/nature03007

    Article  ADS  Google Scholar 

  9. Ciufolini, I., Pavlis, E.C., Ries, J., Koenig, R., Sindoni, G., Paolozzi, A., Newmayer, H.: in Astrophysics and Space Science Library, Astrophysics and Space Science Library, vol. 367, Ciufolini, I., Matzner, R.A.A. (eds.), Astrophysics and Space Science Library, 367, 371. (2010) doi:10.1007/978-90-481-3735-0_17

  10. Everitt, C.W.F., Debra, D.B., Parkinson, B.W., Turneaure, J.P., Conklin, J.W., Heifetz, M.I., Keiser, G.M., Silbergleit, A.S., Holmes, T., Kolodziejczak, J., Al-Meshari, M., Mester, J.C., Muhlfelder, B., Solomonik, V.G., Stahl, K., Worden Jr, P.W., Bencze, W., Buchman, S., Clarke, B., Al-Jadaan, A., Al-Jibreen, H., Li, J., Lipa, J.A., Lockhart, J.M., Al-Suwaidan, B., Taber, M., Wang, S.: Phys. Rev. Lett. 106(22), 221101 (2011). doi:10.1103/PhysRevLett.106.221101

    Article  ADS  Google Scholar 

  11. Yunes, N., Spergel, D.N.: Phys. Rev. D 80, 042004 (2009). doi:10.1103/PhysRevD.80.042004

    Article  ADS  Google Scholar 

  12. Ali-Haimoud, Y.: Phys. Rev. D 83, 124050 (2011). doi:10.1103/PhysRevD.83.124050

    Article  ADS  Google Scholar 

  13. Yunes, N., Pretorius, F.: Phys. Rev. D 79, 084043 (2009). doi:10.1103/PhysRevD.79.084043

    Article  ADS  Google Scholar 

  14. Ali-Haimoud, Y., Chen, Y.: Phys. Rev. D 84, 124033 (2011). doi:10.1103/PhysRevD.84.124033

    Article  ADS  Google Scholar 

  15. Yagi, K., Yunes, N., Tanaka, T.: Phys. Rev. D 86, 044037 (2012). doi:10.1103/PhysRevD.86.044037

    Article  ADS  Google Scholar 

  16. Chen, S., Jing, J.: Class. Quantum Gravity 27, 225006 (2010). doi:10.1088/0264-9381/27/22/225006

    Article  ADS  MathSciNet  Google Scholar 

  17. Yagi, K., Stein, L.C., Yunes, N., Tanaka, T.: Phys. Rev. D 87, 084058 (2013). doi:10.1103/PhysRevD.87.084058

    Article  ADS  Google Scholar 

  18. Vincent, F.: Class. Quantum Gravity 31, 025010 (2013). doi:10.1088/0264-9381/31/2/025010

    Article  ADS  MathSciNet  Google Scholar 

  19. Sopuerta, C.F., Yunes, N.: Phys. Rev. D 80, 064006 (2009). doi:10.1103/PhysRevD.80.064006

    Article  ADS  Google Scholar 

  20. Garfinkle, D., Pretorius, F., Yunes, N.: Phys. Rev. D 82, 041501 (2010). doi:10.1103/PhysRevD.82.041501

    Article  ADS  Google Scholar 

  21. Pani, P., Cardoso, V., Gualtieri, L.: Phys. Rev. D 83, 104048 (2011). doi:10.1103/PhysRevD.83.104048

    Article  ADS  Google Scholar 

  22. Canizares, P., Gair, J.R., Sopuerta, C.F.: Phys. Rev. D 86, 044010 (2012). doi:10.1103/PhysRevD.86.044010

    Article  ADS  Google Scholar 

  23. Braginskii, V.B., Polnarev, A.G.: ZhETF Pis ma Redaktsiiu 31, 444 (1980)

    ADS  Google Scholar 

  24. Polnarev, A.G.: Relativity in celestial mechanics and astrometry. In: Kovalevsky, J., Brumberg, V.A. (eds.). High precision dynamical theories and observational verifications, IAU Symposium, vol. 114, . (1986), IAU Symposium, vol. 114, pp. 401–405

  25. Mashhoon, B., Theiss, D.S.: Phys. Rev. Lett. 49, 1542 (1982). doi:10.1103/PhysRevLett.49.1542

    Article  ADS  MathSciNet  Google Scholar 

  26. Theiss, D.S.: Phys. Lett. A 109, 19 (1985). doi:10.1016/0375-9601(85)90382-2

    Article  ADS  MathSciNet  Google Scholar 

  27. Paik, H.J., Mashhoon, B., Will, C.M.: Experimental Gravitational Physics. In: Michelson, P.F., En-Ke, H., Pizzella, G. (eds.), pp. 229–244. World Scientific, Singapore (1988)

  28. Paik, H.J.: Adv. Space Res. 9, 41 (1989). doi:10.1016/0273-1177(89)90006-9

    Article  ADS  Google Scholar 

  29. Mashhoon, B., Paik, H.J., Will, C.M.: Phys. Rev. D 39, 2825 (1989). doi:10.1103/PhysRevD.39.2825

    Article  ADS  Google Scholar 

  30. Paik, H.J.: Gen. Relativ. Gravit. 40, 907 (2008). doi:10.1007/s10714-007-0582-4

    Article  ADS  MATH  Google Scholar 

  31. Rummel, R., Yi, W., Stummer, C.: J. Geod. 85, 777 (2011). doi:10.1007/s00190-011-0500-0

    Article  ADS  Google Scholar 

  32. Moody, M.V., Paik, H.J., Canavan, E.R.: Rev. Sci. Instrum. 73, 3957 (2002). doi:10.1063/1.1511798

    Article  ADS  Google Scholar 

  33. Moody, M.V., Paik, H., Venkateswara, K.Y., Shirron, P.J., Dipirro, M.J., Canavan, E.R., Han, S., Ditmar, P., Klees, R., Jekeli, C., Shum, C.: AGU Fall Meeting Abstracts p. A786 (2010)

  34. Shirron, P.J., Dipirro, M.J., Canavan, E.R., Paik, H., Moody, M.V., Venkateswara, K.Y., Han, S., Ditmar, P., Klees, R., Jekeli, C., Shum, C.: AGU Fall Meeting Abstracts p. A785 (2010)

  35. Paik, H.J.: SQUID handbook, vol. 2. Wiley, New York (2006)

    Google Scholar 

  36. Li, X.Q., Shao, M.X., Paik, H., Huang, Y.C., Song, T.X., Bian, X.: Gen. Relativ. Gravit. 46(5), 1737 (2014). doi:10.1007/s10714-014-1737-8

    Article  ADS  Google Scholar 

  37. Alexander, S., Yunes, N.: Phys. Rev. Lett. 99, 241101 (2007). doi:10.1103/PhysRevLett.99.241101

    Article  ADS  MathSciNet  Google Scholar 

  38. Alexander, S., Yunes, N.: Phys. Rev. D 75, 124022 (2007). doi:10.1103/PhysRevD.75.124022

    Article  ADS  MathSciNet  Google Scholar 

  39. Will, C.M.: Living Rev. Relativ. 17, 4 (2014). doi:10.12942/lrr-2014-4

  40. Will, C.M., Nordtvedt, J.: Kenneth. Astrophys. J. 177, 757 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  41. Will, C.: Theory and experiment in gravitational physics. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  42. Schiff, L.I.: Proc. Natl. Acad. Sci. 46, 871 (1960). doi:10.1073/pnas.46.6.871

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSFC Grands Nos. 41204051 and 11305255.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Xu.

Appendices

Appendix 1: The standard PPN metric

The standard PPN metric has the form [39]

$$\begin{aligned} g_{00}&= -1+2U-2\beta U^{2}-2\xi \varPhi _{W}+(2\gamma +2+\alpha _{3}+\zeta _{1}-2\xi )\varPhi _{1}\\&\quad +2(3\gamma -2\beta +1+\zeta _{2}+\xi )\varPhi _{2}+ 2(1+\zeta _{3})\varPhi _{3}+2(3\gamma +3\zeta _{4}-2\xi )\varPhi _{4}\\&\quad -(\zeta _{1}-2\xi )\mathcal {A}\!-\!(\alpha _{1}- \alpha _{2}\!-\!\alpha _{3})w^{2}U\!-\!\alpha _{2}w^{i}w^{j}U_{ij}\!+\!(2\alpha _{3}\!-\!\alpha _{1})w^{i}V_{i}+\mathcal {O}(\epsilon ^{6}),\\ g_{0i}&= -\frac{1}{2}(4\gamma +3+\alpha _{1}- \alpha _{2}+\zeta _{1}-2\xi )V_{i}-\frac{1}{2}(1+\alpha _{2}-\zeta _{1}+2\xi )W_{i}\\&\quad -\frac{1}{2}(\alpha _{1}-2\alpha _{2})w^{i}U-\alpha _{2}w^{j}U_{ij}+\mathcal {O}(\epsilon ^{5}),\\ g_{ij}&= (1+2\gamma U)\delta _{ij}+\mathcal {O}(\epsilon ^{4}), \end{aligned}$$

where the PN potentials read

$$\begin{aligned} U&= \int \frac{\rho '}{|\mathbf {x}-\mathbf {x'}|}d^{3}x',\ \ \ \ \varPhi _{1}=\int \frac{\rho 'v'^{2}}{|\mathbf {x}-\mathbf {x'}|}d^{3}x',\\ \varPhi _{2}&= \int \frac{\rho 'U'}{|\mathbf {x}-\mathbf {x'}|}d^{3}x',\ \ \ \ \varPhi _{3}=\int \frac{\rho '\varPi '}{|\mathbf {x}-\mathbf {x'}|}d^{3}x',\\ \varPhi _{4}&= \int \frac{p'}{|\mathbf {x}-\mathbf {x'}|}d^{3}x',\ \ \ \ V_{i}=\int \frac{\rho 'v'^{i}}{|\mathbf {x}-\mathbf {x'}|}d^{3}x',\\ W_{i}&= \int \frac{\rho '[\mathbf {v}'\cdot (\mathbf {x}-\mathbf {x'})](x^{i}-x'^{i})}{|\mathbf {x}-\mathbf {x'}|^{3}}d^{3}x',\\ U_{ij}&= \int \frac{\rho '(x^{i}-x'^{i})(x^{j}-x'^{j})}{|\mathbf {x}-\mathbf {x'}|^{3}}d^{3}x',\\ \mathcal {A}&= \int \frac{\rho '[\mathbf {v}'\cdot (\mathbf {x}-\mathbf {x'})]^{2}}{|\mathbf {x}-\mathbf {x'}|^{3}}d^{3}x',\\ \varPhi _{W}&= \int \frac{\rho '\rho ''(\mathbf {x}-\mathbf {x}')}{|\mathbf {x}-\mathbf {x'}|^{3}}\cdot (\frac{\mathbf {x'}-\mathbf {x}''}{|\mathbf {x'}-\mathbf {x}''|}-\frac{\mathbf {x}-\mathbf {x}''}{|\mathbf {x}-\mathbf {x}''|})d^{3}x'd^{3}x''. \end{aligned}$$

The matter variables are the rest mass density \(\rho \), pressure \(p\), coordinate velocity of the matter field \(v^{i}\), internal energy per unit mass \(\varPi \) and the coordinate velocity of the PPN coordinate system relative to the mean rest-frame of the universe \(w^{i}\). The PN orders read

$$\begin{aligned} v\sim \mathcal {O}(\epsilon ),\ \ \ \ v^{2}\sim U\sim \varPi \sim \frac{p}{\rho }\sim \mathcal {O}(\epsilon ^{2}). \end{aligned}$$

The standard PN parameters \(\{\gamma ,\ \beta ,\ \xi \ ,\alpha _{1},\ \alpha _{2},\ \alpha _{3},\ \zeta _{1},\ \zeta _{2},\ \zeta _{3},\ \zeta _{4}\}\) have the following meanings. The parameters \(\gamma \) and \(\beta \) are the usual Eddington–Robertson–Schiff parameters used to describe the “classical” tests of GR and are in some sense the most important ones. For GR \(\gamma =\beta =1\) are the only non-vanishing parameters. The parameter \(\xi \) measures the preferred-location effects, \(\{\alpha _{1},\ \alpha _{2},\ \alpha _{3}\}\) measure the preferred-frame effects and\(\{\alpha _{3},\ \zeta _{1},\ \zeta _{2},\ \zeta _{3},\ \zeta _{4}\}\) measure the violations of global conservation laws for total momentum. The up-to-date values of these parameters are summarized in Table 1 [39].

Appendix 2: The transformation matrices and tidal matrices

From Eqs. (13, 14, 15, 16, 17), the transformation matrices between the local frame and the Earth centered PN system up to 1PN level read

$$\begin{aligned}&\mathbf {e=}\nonumber \\&\left( \begin{array}{cccc} 1+\frac{a^{2}\omega ^{2}}{2}+\frac{M}{a} &{} -a\omega \sin \varPsi &{} a\omega \cos i\cos \varPsi &{} a\omega \sin i\cos \varPsi \\ a\omega &{} -\left( 1+\frac{a^{2}\omega ^{2}}{2}-\frac{\gamma M}{a}\right) \sin \varPsi &{} \left( 1+\frac{a^{2}\omega ^{2}}{2}-\frac{\gamma M}{a}\right) \cos i\cos \varPsi &{} \left( 1+\frac{a^{2}\omega ^{2}}{2}-\frac{\gamma M}{a}\right) \sin i\sin \varPsi \\ 0 &{} \left( 1-\frac{\gamma M}{a}\right) \cos \varPsi &{} \left( 1-\frac{\gamma M}{a}\right) \cos i\sin \varPsi &{} \left( 1-\frac{\gamma M}{a}\right) \sin i\sin \varPsi \\ 0 &{} 0 &{} -\left( 1-\frac{\gamma M}{a}\right) \sin i &{} \left( 1-\frac{\gamma M}{a}\right) \cos i \end{array}\right) ,\nonumber \\ \end{aligned}$$
(27)
$$\begin{aligned}&{{\underline{\varvec{{e}}}}}=\nonumber \\&\left( \begin{array}{cccc} 1+\frac{a^{2}\omega ^{2}}{2}-\frac{M}{a} &{} -a\omega &{} 0 &{} 0\\ a\omega \sin \varPsi &{} -\left( 1+\frac{a^{2}\omega ^{2}}{2}+\frac{\gamma M}{a}\right) \sin \varPsi &{} \left( 1+\frac{\gamma M}{a}\right) \cos \varPsi &{} 0\\ -a\omega \cos i\cos \varPsi &{} \left( 1+\frac{a^{2}\omega ^{2}}{2}+\frac{\gamma M}{a}\right) \cos i\cos \varPsi &{} \left( 1+\frac{\gamma M}{a}\right) \cos i\sin \varPsi &{} -\left( 1+\frac{\gamma M}{a}\right) \sin i\\ -a\omega \sin i\cos \varPsi &{} \left( 1+\frac{a^{2}\omega ^{2}}{2}+\frac{\gamma M}{a}\right) \sin i\cos \varPsi &{} \left( 1+\frac{\gamma M}{a}\right) \sin i\sin \varPsi &{} \left( 1+\frac{\gamma M}{a}\right) \cos i \end{array}\right) . \end{aligned}$$
(28)

From Eqs. (12, 13, 27, 28), the 3 dimensional tidal matrix \(\tilde{K}_{ij} \equiv \tilde{K}_{ij}^{N}+ \tilde{K}_{ij}^{GE}+\tilde{K}_{ij}^{GM}+\tilde{K}_{ij}^{CS}\) along the circular orbit in the Earth pointing local frame can be worked out as

$$\begin{aligned} \tilde{K}^{N}&= \frac{M}{a^{3}}\left( \begin{array}{ccc} 1 &{} 0 &{} 0\\ 0 &{} -2 &{} 0\\ 0 &{} 0 &{} 1 \end{array}\right) ,\end{aligned}$$
(29)
$$\begin{aligned} \tilde{K}^{GE}&= \frac{M}{a^{3}}\left( \begin{array}{ccc} -\frac{(2\beta +3\gamma -2)M}{a} &{} 0 &{} 0\\ 0 &{} \frac{(6\beta +5\gamma -5)M}{a}-(\gamma +2)a^{2}\omega ^{2} &{} 0\\ 0 &{} 0 &{} \frac{(-2\beta -3\gamma +2)M}{a}+(2\gamma +1)\omega ^{2}a^{2} \end{array}\right) ,\end{aligned}$$
(30)
$$\begin{aligned} \tilde{K}^{GM}&= \frac{J\omega }{a^{3}}\left( \begin{array}{ccc} 0 &{} 0 &{} -\frac{3}{2}\varDelta \sin i\cos \varPsi \\ 0 &{} 3\varDelta \cos i &{} \frac{9}{2}\varDelta \sin i\sin \varPsi \\ -\frac{3}{2}\varDelta \sin i\cos \varPsi &{} \frac{9}{2}\varDelta \sin i\sin \varPsi &{} -3\varDelta \cos i \end{array}\right) ,\end{aligned}$$
(31)
$$\begin{aligned} \tilde{K}^{CS}&= \frac{J\omega }{a^{3}}\left( \begin{array}{ccc} 0 &{} -\frac{1}{4}\chi \sin i\sin \varPsi &{} -\frac{1}{4}\chi \cos i\\ -\frac{1}{4}\chi \sin i\sin \varPsi &{} -\frac{3}{2}\chi \sin i\cos \varPsi &{} 0\\ -\frac{1}{4}\chi \cos i &{} 0 &{} \frac{1}{2}\chi \sin i\cos \varPsi \end{array}\right) . \end{aligned}$$
(32)

Here, \(\tilde{K}^{N}\), \(\tilde{K}^{GE}\), \(\tilde{K}^{GM}\) and \(\tilde{K}^{CS}\) denote the gravitational tidal matrices from the Newtonian force, the 1PN gravitoelectric force, the gravitomagnetic force and the contributions from the CS modification. Since the Earth pointing frame is rotating relative to parallel transported frames (Fermi shifted), we need to include the tidal matrix from the centrifugal force produced by such rotation

$$\begin{aligned} \tilde{K}^{\omega }=-\omega _{0}^{2}\begin{pmatrix}1\\ &{}\quad 1\\ &{} &{}\quad 0 \end{pmatrix}, \end{aligned}$$
(33)

where \(\omega _{0}=\frac{d\varPsi }{dt}+\frac{1}{a}\mathcal {O}(\epsilon ^{3})\) denote the angular velocity of the rotation of the local frame.

Appendix 3: The explicit form of the gradients readouts

For the two-axes SGG discussed in Sect. 2.3, see Eq.(18) and Fig. 2, the readouts along \(\hat{\mathbf {p}}\) and \(\hat{\mathbf {q}}\) are

$$\begin{aligned} \tilde{K}_{\hat{\mathbf {p}}\hat{\mathbf {p}}}^{\omega }&= \tilde{K}_{\hat{\mathbf {q}}\hat{\mathbf {q}}}^{\omega }=-\omega _{0}^{2}\ \ \ \ \ \ \ \tilde{K}_{\hat{\mathbf {p}}\hat{\mathbf {p}}}^{N}=\tilde{K}_{\hat{\mathbf {q}}\hat{\mathbf {q}}}^{N}=-\frac{M}{2a^{3}},\\ \tilde{K}_{\hat{\mathbf {p}}\hat{\mathbf {p}}}^{GE}&= \tilde{K}_{\hat{\mathbf {q}}\hat{\mathbf {q}}}^{GE}=\frac{(4\beta +2\gamma -3)M^{2}}{2a^{4}}-\frac{(\gamma +2)M\omega ^{2}}{2a},\\ \tilde{K}_{\hat{\mathbf {p}}\hat{\mathbf {p}}}^{GM}&= \tilde{K}_{\hat{\mathbf {q}}\hat{\mathbf {q}}}^{GM}=\frac{3\varDelta J\omega \cos i}{2a^{3}},\\ \tilde{K}_{\hat{\mathbf {p}}\hat{\mathbf {p}}}^{CS}&= -\frac{\chi J\omega \sin i(3\cos \varPsi +\sin \varPsi )}{4a^{3}},\ \ \ \ \ \tilde{K}_{\hat{\mathbf {q}}\hat{\mathbf {q}}}^{CS}=-\frac{\chi J\omega \sin i(3\cos \varPsi -\sin \varPsi )}{4a^{3}}. \end{aligned}$$

For the three-axes SGG in Sect. 2.3, see Eqs. (21, 22, 23) and Fig. (3), the readouts along \(\hat{\mathbf {n}}\), \(\hat{\mathbf {p}}\) and \(\hat{\mathbf {q}}\) are

$$\begin{aligned} \tilde{K}_{\hat{\mathbf {n}}\hat{\mathbf {n}}}^{\omega }&= -\omega _{0}^{2},\quad \tilde{K}_{\hat{\mathbf {p}}\hat{\mathbf {p}}}^{\omega }=\tilde{K}_{\hat{\mathbf {q}}\hat{\mathbf {q}}}^{\omega }=-\frac{\omega _{0}^{2}}{2},\\ \tilde{K}_{\hat{\mathbf {n}}\hat{\mathbf {n}}}^{N}&= -\frac{M(3\cos 2\phi +1)}{2a^{3}},\quad \tilde{K}_{\hat{\mathbf {p}}\hat{\mathbf {p}}}^{N}=\tilde{K}_{\hat{\mathbf {q}}\hat{\mathbf {q}}}^{N}=\frac{M(3\cos 2\phi +1)}{4a^{3}},\\ \tilde{K}_{\hat{\mathbf {n}}\hat{\mathbf {n}}}^{GE}&= \frac{\left( (6\beta +5\gamma -5)\cos ^{2}\phi -(2\beta +3\gamma -2)\sin ^{2}\phi \right) M^{2}}{a^{4}}-\frac{(\gamma +2)\cos ^{2}\phi M\omega ^{2}}{a},\\ \tilde{K}_{\hat{\mathbf {p}}\hat{\mathbf {p}}}^{GE}&= \tilde{K}_{\hat{\mathbf {q}}\hat{\mathbf {q}}}^{GE}=-\frac{((4\gamma -1)+(8\beta +8\gamma -7)\cos 2\phi )M^{2}}{4a^{4}}+\frac{((\gamma +2)\cos 2\phi +3\gamma )M\omega ^{2}}{4a},\\ \tilde{K}_{\hat{\mathbf {n}}\hat{\mathbf {n}}}^{GM}&= \frac{3\varDelta J\omega \cos i\cos ^{2}\phi }{a^{3}},\\ \tilde{K}_{\hat{\mathbf {p}}\hat{\mathbf {p}}}^{GM}&= -\frac{3\varDelta J\omega \left( \sin i(3\sin \phi \sin \varPsi -\cos \phi \cos \varPsi )+\cos i\cos ^{2}\phi \right) }{2a^{3}},\\ \tilde{K}_{\hat{\mathbf {q}}\hat{\mathbf {q}}}^{GM}&= -\frac{3\varDelta J\omega \left( \sin i(-3\sin \phi \sin \varPsi +\cos \phi \cos \varPsi )+\cos i\cos ^{2}\phi \right) }{2a^{3}},\\ \tilde{K}_{\hat{\mathbf {n}}\hat{\mathbf {n}}}^{CS}&= \frac{J\chi \omega \sin i\cos \phi (\sin \phi \sin \varPsi -3\cos \phi \cos \varPsi )}{2a^{3}},\\ \tilde{K}_{\hat{\mathbf {p}}\hat{\mathbf {p}}}^{CS}&= \frac{J\chi \omega \left( \sin i\left( (1-3\sin ^{2}\phi )\cos \varPsi -\sin \phi \cos \phi \sin \varPsi \right) +\cos i\cos \phi \right) }{4a^{3}},\\ \tilde{K}_{\hat{\mathbf {q}}\hat{\mathbf {q}}}^{CS}&= \frac{J\chi \omega \left( \sin i\left( (1-3\sin ^{2}\phi )\cos \varPsi -\sin \phi \cos \phi \sin \varPsi \right) -\cos i\cos \phi \right) }{4a^{3}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiang, LE., Xu, P. Testing Chern-Simons modified gravity with orbiting superconductive gravity gradiometers: the non-dynamical formulation. Gen Relativ Gravit 47, 26 (2015). https://doi.org/10.1007/s10714-015-1871-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-015-1871-y

Keywords

Navigation