Skip to main content
Log in

Deformations of three-dimensional metrics

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We examine three-dimensional metric deformations based on a tetrad transformation through the action the matrices of scalar field. We describe by this approach to deformation the results obtained by Coll et al. (Gen. Relativ. Gravit. 34:269, 2002), where it is stated that any three-dimensional metric was locally obtained as a deformation of a constant curvature metric parameterized by a 2-form. To this aim, we construct the corresponding deforming matrices and provide their classification according to the properties of the scalar \(\sigma \) and of the vector \(\mathbf {s}\) used in Coll et al. (Gen Relativ Gravit 34:269, 2002) to deform the initial metric. The resulting causal structure of the deformed geometries is examined, too. Finally we apply our results to a spherically symmetric three geometry and to a space sector of Kerr metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Capital latin letters \(A\) are tensorial indices while Latin letter \(a\) denote the tensorial character of each object i.e. they are spacetime indices.

  2. In units of \(c=G=1.\)

References

  1. Ellis, G.F.R., Stoeger, W.: The ‘fitting problem’ in cosmology. Class. Quantum Gravity 4, 1697 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Acena, A., Valiente Kroon, J.A.: Conformal extensions for stationary spacetimes. Class. Quantum Gravity 28, 225023 (2011)

    Article  MathSciNet  Google Scholar 

  3. Friedrich, H.: The conformal structure of spacetime: geometry, analysis, numerics. In: Frauendiener, J., Friedrich, H. (eds.) Conformal Einstein Evolution. Lecture Notes in Physics. Springer, Berlin (2002)

    Google Scholar 

  4. Lübbe, C., Valiente Kroon, J.A.: The extended conformal Einstein field equations with matter: the Einstein–Maxwell system. J. Geom. Phys. 62, 1548 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Lübbe, C., Valiente Kroon, J.A.: A class of conformal curves in the Reissner–Nordström spacetime. Annales Henri Poincare 15, 1327 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  6. Lübbe, C., Kroon, J.A.V.: A conformal approach for the analysis of the non-linear stability of pure radiation cosmologies. Ann. Phys. 328, 1 (2013)

    Article  ADS  MATH  Google Scholar 

  7. Valiente Kroon, J.A.: Conformal Methods in General Relativity. Cambridge University Press, Cambridge (2015, in preparation)

  8. Capozziello, S., De Laurentis, M.: A review about invariance induced gravity: gravity and spin from local conformal-affine symmetry. Found. Phys. 40, 867 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Capozziello, S., De Laurentis, M.: Extended theories of gravity. Phys. Rep. 509, 167 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  10. Ter-Kazarian, G.: Two-step spacetime deformation induced dynamical torsion. Class. Quantum Gravity 28, 055003 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  11. Carfora, M., Marzuoli, A.: Smoothing out spatially closed cosmologies. Phys. Rev. Lett. 53, 2445 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  12. Mukhanov, V.F., Feldman, H.A., Brandenberger, R.H.: Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rep. 215, 203 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  13. Newman, E.T., Janis, A.I.: Note on the Kerr spinning particle metric. J. Math. Phys. 6, 915 (1965)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Carlip, S., Teitelboim, C.T.: Aspects of black hole quantum mechanics and thermodynamics in (2+1)-dimensions. Phys. Rev. D 51, 622 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  15. Coll, B., Llosa, J., Soler, D.: Three-dimensional metrics as deformations of a constant curvature metric. Gen. Relativ. Gravit. 34, 269 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Llosa, J., Soler, D.: On the degrees of freedom of a semi-Riemannian metric. Class. Quantum Gravity 22, 893 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Soler, D.: Reference frames and rigid motions in relativity: applications. Found. Phys. 36, 1718 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Llosa, J., Carot, J.: Flat deformation theorem and symmetries in spacetime. Class. Quantum Gravity 26, 055013 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. Llosa, J., Carot, J.: Flat deformation of a spacetime admitting two commuting Killing fields. Class. Quantum Gravity 27, 245006 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  20. Coll, B., Hildebrandt, S.R., Senovilla, J.M.M.: Kerr–Schild symmetries. Gen. Relativ. Gravit. 33, 649 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Coll, B.: A universal law of gravitational deformation for general relativity. In: Proceedings of the Spanish Relativistic Meeting, EREs, Salamanca Spain (1998)

  22. Llosa, J., Soler, D.: Reference frames and rigid motions in relativity. Class. Quantum Gravity 21, 3067 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Capozziello, S., Stornaiolo, C.: Space–time deformations as extended conformal transformations. Int. J. Geom. Meth. Mod. Phys. 5, 185 (2008)

    Article  MathSciNet  Google Scholar 

  24. Pugliese, D.: Deformazioni di metriche spaziotemporali, Thesis (unpublished) 2006–2007. Università degli studi di Napoli Federico II. Dipartimento di Scienze Fisiche, Biblioteca Roberto Stroffolini

  25. Wald, R.M.: General Relativity. The University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  26. Stephani, H., Kramer, D., MacCallum, M.: Exact Solutions of Einstein’s Field Equations, Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2009)

  27. Banados, M., Teitelboim, C., Zanelli, J.: The black hole in three-dimensional space–time. Phys. Rev. Lett. 69, 1849 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Banados, M., Henneaux, M., Teitelboim, C., Zanelli, J.: Geometry of the (2+1) black hole. Phys. Rev. D 48, 1506 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  29. Dain, S., Gabach-Clement, M.E.: Small deformations of extreme Kerr black hole initial data. Class. Quantum Gravity 28, 075003 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  30. Choquet-Bruhat, Y.: General Relativity and the Einstein equations. Oxford University Press, Oxford (2008)

    Book  Google Scholar 

  31. Griffiths, J.B., Podolsk, J.: Exact Space–Times in Einstein’s General Relativity, Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2009)

  32. Pugliese, D., Stornaiolo, C., Capozziello, S.: Deformations of spacetime metrics. arXiv:0910.5738 [gr-qc]

Download references

Acknowledgments

D.P. gratefully acknowledges support from the Blanceflor Boncompagni-Ludovisi, née Bildt and wishes to thank the Angelo Della Riccia Foundation and thanks the institutional support of the Faculty of Philosophy and Science of the Silesian University of Opava. This work is partially supported by the INFN Iniziativa Specifica QGSKY “Quantum Universe”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Pugliese.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pugliese, D., Stornaiolo, C. Deformations of three-dimensional metrics. Gen Relativ Gravit 47, 20 (2015). https://doi.org/10.1007/s10714-015-1864-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-015-1864-x

Keywords

Navigation