Skip to main content
Log in

On the Notions of Energy Tensors in Tetrad-Affine Gravity

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We are concerned with the precise modalities by which mathematical constructions related to energy tensors can be adapted to a tetrad-affine setting. We show that, for fairly general gauge field theories formulated in that setting, two notions of energy tensor (the canonical tensor and the stress-energy tensor) exactly coincide with no need for tweaking. Moreover, we show how both notions of energy tensor can be naturally extended to include the gravitational field itself, represented by a couple constituted by the tetrad and the spinor connection. Then we examine the on-shell divergences of these tensors in relation to the issue of local energy conservation in the presence of torsion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Goldsmith and S. Sternberg, “The Hamilton-Cartan formalism in the calculus of variations,” Ann. Inst. Fourier, Grenoble 23, 203–267 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  2. M. J. Gotay and J. E. Marsden, “Stress-energymomentum tensors and the Belinfante-Rosenfeld formula,” Contemp. Math. 132, 367–392 (1992).

    Article  MATH  Google Scholar 

  3. B. Kuperschmidt, “Geometry of jet bundles and the structure of Lagrangian and Hamiltonian formalisms,” Lecture Notes in Math. 775, 162–218 (1979).

    Article  MathSciNet  Google Scholar 

  4. L. Landau and E. Lifchitz, Théorie du champ (EditionsMir, Moscou, 1968).

    MATH  Google Scholar 

  5. L. Mangiarotti and M. Modugno, “Some results on the calculus of variations on jet spaces,” Ann. Inst. H. Poinc. 39, 29–43 (1983).

    MathSciNet  MATH  Google Scholar 

  6. A. Trautman, “Noether equations and conservation laws,” Commun. Math. Phys. 6, 248–261 (1967).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. M. Ferraris and M. Francaviglia, “Conservation laws in general relativity,” Class. Quantum Grav. 9, S79 (1992).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. L. Fatibene, M. Ferraris, and M. Francaviglia, “Noether formalism for conserved quantities in classical gauge field theories,” J. Math. Phys. 35 1644 (1994).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. M. Forger and H. Römer, “Currents and the energymomentum tensor in classical field theory, a fresh look at an old problem,” Annals Phys. 309, 306–389 (2004).

    Article  MATH  ADS  Google Scholar 

  10. F. J. Belinfante, “On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields,” Physica VII, 449–474 (1940).

    Google Scholar 

  11. L. Rosenfeld, “Sur le tenseur d’impulsion-énergie,” Mem. Acad. Roy. Belg. Sci. 18, 1–30 (1940).

    MATH  Google Scholar 

  12. K. Bamba and K. Shimizu, “Construction of energymomentum tensor of gravitation,” Int. J. Geom. MethodsMod. Phys. 13, 1650001 (2016).

    Article  MATH  Google Scholar 

  13. C. M. Chen and J. M. Nester, “A symplectic Hamiltonian derivation of quasilocal energy-momentum for GR,” Grav. Cosmol. 6, 257–270 (2000).

    MATH  ADS  Google Scholar 

  14. J. Kijowski, “A simple derivation of canonical structure and quasi-local Hamiltonians in General Relativity,” Gen. Rel. Grav. 29, 307–343 (1997).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. A. Komar, “Covariant conservation laws in general relativity,” Phys. Rev. 113, 934–936 (1959).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Lau Loi So, “Gravitational energy froma combination of a tetrad expression and Einstein’s pseudotensor,” Class. Quantum Grav. 25, 175012 (2008).

    Article  MATH  ADS  Google Scholar 

  17. M. Leclerc, “Canonical and gravitational stressenergy tensors,” Int. J.Mod. Phys. D 15, 959–990 (2006).

    Article  MATH  ADS  Google Scholar 

  18. T. Padmanabhan, “General Relativity from a thermodynamic perspective,” Gen. Rel. Grav. 46, 1673 (2014).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. D. Canarutto, “Overconnections and the energytensors of gauge and gravitational fields,” J. Geom. Phys. 106, 192–204 (2016).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. É. Cartan, “Sur une généralisation de la notion de courbure de Riemann et les espaces átorsion,” C. R. Acad. Sci. (Paris) 174, 593–595 (1922).

    MATH  ADS  Google Scholar 

  21. É. Cartan, “Sur les variétés áconnexion affine et la théorie de la relativitégénéralisée,” Part I: Ann. Éc. Norm. 40, 325–412 (1923) and 41 (1924), 1–25; Part II: Ann. Éc. Norm. 42 (1925), 17–88 (1925).

    Google Scholar 

  22. F. W. Hehl, “Spin and torsion in general relativity: I. Foundations,” Gen. Rel. Grav. 4, 333–349 (1973).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. F. W. Hehl, “Spin and torsion in General Relativity: II. Geometry and field equations,” Gen. Rel. Grav. 5, 491–516 (1974).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. F. W. Hehl, P. von der Heyde, G. D. Kerlick, and J.M. Nester, “General relativity with spin and torsion: Foundations and prospects,” Rev. Mod. Phys. 48, 393–416 (1976).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. F. W. Hehl, J. D. McCrea, E. W. Mielke, and Y. Ne’eman, “Metric-affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilaton invariance,” Phys. Rep. 258, 1–171 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  26. M. Henneaux, “On geometrodynamics with tetrad fields,” Gen. Rel. Grav. 9, 1031–1045 (1978).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. T. W. B. Kibble, “Lorentz invariance and the gravitational field,” J.Math. Phys. 2, 212 (1961).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. N. J. Popławsky, “Geometrization of electromagnetism in tetrad-spin-connection gravity,” Mod. Phys. Lett. A 24 (6), 431–442 (2009).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. D. W. Sciama, “On a non-symmetric theory of the pure gravitational field,” Proc. Cambridge Philos. Soc. 54, 72–80 (1958).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. A. Trautman, “Einstein-Cartan theory,” in Encyclopedia of Mathematical Physics, Vol. 2, Ed. J.-P. Franзoise, G. L. Naber, and S. T. Tsou (Elsevier, Oxford, 2006), pp. 189–195.

    Chapter  Google Scholar 

  31. R. Penrose and W. Rindler, Spinors and Space-Time. I: Two-Spinor Calculus and Relativistic Fields (Cambridge University Press, Cambridge, 1984).

    Book  MATH  Google Scholar 

  32. R. Penrose and W. Rindler, Spinors and Space-Time. II: Spinor and Twistor Methods in Space-Time Geometry (Cambridge University Press, Cambridge, 1988).

    MATH  Google Scholar 

  33. D. Canarutto, “Possibly degenerate tetrad gravity and Maxwell-Dirac fields,” J. Math. Phys. 39 (9), 4814–4823 (1998).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. D. Canarutto, “Two-spinors, field theories and geometric optics in curved spacetime,” Acta Appl. Math. 62 (2), 187–224 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  35. D. Canarutto, “Minimal geometric data” approach to Dirac algebra, spinor groups and field theories,” Int. J. Geom.Met.Mod. Phys., 4 (6), 1005–1040 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  36. D. Canarutto, “Tetrad gravity, electroweak geometry and conformal symmetry,” Int. J. Geom. Met. Mod. Phys., 8 (4), 797–819 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  37. D. Canarutto, “Natural extensions of electroweak geometry and Higgs interactions,” Ann. Inst. H. Poincaré 16 (11), 2695–2711 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Frölicher and A. Nijenhuis, “Theory of vector–valued differential forms, Part I,” Indagationes Mathematicae 18, 338–360 (1956).

    Article  MATH  Google Scholar 

  39. L. Mangiarotti and M. Modugno, “Graded Lie algebras and connections on a fibred space,” Journ.Math. Pur. et Applic. 63, 111–120 (1984).

    MATH  Google Scholar 

  40. I. Kolář, P. Michor, and J. Slovák, Natural Operations in Differential Geometry (Springer-Verlag, 1993).

    Book  MATH  Google Scholar 

  41. D. Canarutto, “Covariant-differential formulation of Lagrangian field theory,” arXiv: 1607.03864.

  42. P. L. Garcнa, “The Poincarй-Cartan invariant in the calculus of variations,” Symposia Mathematica 14, 219–246 (1974).

    Google Scholar 

  43. D. Krupka, Introduction to Global Variational Geometry (Springer, 2015).

    Book  MATH  Google Scholar 

  44. D. J. Saunders, The Geometry of Jet Bundles (Cambridge University Press, 1989).

    Book  MATH  Google Scholar 

  45. V. Bargmann and E. P. Wigner, “Group theoretical discussion of relativistic wave equations,” Proc. Nat. Acad. Sci. of the USA 34 (5), 211–223 (1948).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  46. N. H. Barth and S. M. Christensen, “Arbitrary spin field equations on curved manifolds with torsion,” J. Phys. A 16, 543–563 (1983).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  47. D. Canarutto, “A first-order Lagrangian theory of fields with arbitrary spin,” Int. J. Geom. Met. Mod. Phys. (to appear), arXiv: 1704.01110.

  48. S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, (Cambridge Univ. Press, Cambridge, 1973).

    Book  MATH  Google Scholar 

  49. R. Hermann, “Gauge fields and Cartan-Ehresmann connections, Part A,” in Interdisciplinary Mathematics, Vol. X, (Math. Sci. Press, Brooklyn, 1975).

    Google Scholar 

  50. D. Canarutto and M. Modugno, “Ehresmann’s connections and the geometry of energy-tensors in Lagrangian field theories,” Tensor 42, 112–120 (1985).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Canarutto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canarutto, D. On the Notions of Energy Tensors in Tetrad-Affine Gravity. Gravit. Cosmol. 24, 122–128 (2018). https://doi.org/10.1134/S0202289318020056

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289318020056

Navigation