Skip to main content
Log in

Electromagnetic waves from neutron stars and black holes driven by polar gravitational perturbations

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Neutron stars and black holes are the most compact astrophysical objects we can think of and as a consequence they are the main sources of gravitational waves. There are many astrophysically relevant scenarios in which these objects are immersed in or endowed with strong magnetic fields, in such a way that gravitational perturbations can couple to electromagnetic ones and can potentially trigger synergistic electromagnetic signatures. In a recent paper we derived the main equations for gravito-electromagnetic perturbations and studied in detail the case of polar electromagnetic perturbations driven by axial gravitational perturbations. In this paper we deal with the case of axial electromagnetic perturbations driven by polar black-hole or neutron stars oscillations, in which the energy emitted in case is considerably larger than in the previous case. In the case of neutron stars the phenomenon lasts considerably longer since the fluid acts as an energy reservoir that shakes the magnetic field for a timescale of the order of secs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abbott, B.P., et al.: (The LIGO scientific collaboration) Rept. Prog. Phys. 72, 076901 (2009)

    Google Scholar 

  2. Accadia, T., et al.: (The Virgo Collaboration), Nuovo Cim. C034N06, 189 (2011)

  3. Somiya, K., et al.: (KAGRA Collaboration) Class. Quant. Grav. 29, 124007 (2012)

    Google Scholar 

  4. Punturo, M., et al.: Class. Quant. Grav. 27, 194002 (2010)

    Article  ADS  Google Scholar 

  5. Seoane, P.A., et al.: The eLISA Consortium (preprint). arXiv:1305.5720

  6. Kawamura, S., et al.: Class. Quant. Grav. 28, 094011 (2011)

    Article  ADS  Google Scholar 

  7. Manchester, R.N., et al.: The International Pulsar Timing Array (preprint). arXiv:1309.7392

  8. Andersson, N., Kokkotas, K.D.: Mon. Not. R. Astron. Soc. 299, 1059 (1998)

    Article  ADS  Google Scholar 

  9. Kokkotas, K.D., Apostolatos, T.A., Andersson, N.: Mon. Not. R. Astron. Soc. 320, 307 (2001)

    Article  ADS  Google Scholar 

  10. Sotani, H., Kohri, K., Harada, T.: Phys. Rev. D 69, 084008 (2004)

    Article  ADS  Google Scholar 

  11. Sotani, H., Yasutake, N., Maruyama, T., Tatsumi, T.: Phys. Rev. D 83, 024014 (2011)

    Article  ADS  Google Scholar 

  12. Gaertig, E., Glampedakis, K., Kokkotas, K.D., Zink, B.: Phys. Rev. Lett. 107, 101102 (2011)

    Article  ADS  Google Scholar 

  13. Sotani, H., Kokkotas, K.D.: Phys. Rev. D 70, 084026 (2004)

    Article  ADS  Google Scholar 

  14. Sotani, H., Kokkotas, K.D.: Phys. Rev. D 71, 124038 (2005)

    Article  ADS  Google Scholar 

  15. Sotani, H.: Phys. Rev. D 79, 064033 (2009)

    Article  ADS  Google Scholar 

  16. Sotani, H.: Phys. Rev. D 80, 064035 (2009)

    Article  ADS  Google Scholar 

  17. Yagi, K., Yunes, N., Tanaka, T.: Phys. Rev. Lett. 109, 251105 (2012)

    Article  ADS  Google Scholar 

  18. Levin, Y.: Mon. Not. R. Astron. Soc. 377, 159 (2007)

    Article  ADS  Google Scholar 

  19. Sotani, H., Kokkotas, K.D., Stergioulas, N.: Mon. Not. R. Astron. Soc. 375, 261 (2007)

    Article  ADS  Google Scholar 

  20. Sotani, H., Kokkotas, K.D., Stergioulas, N.: Mon. Not. R. Astron. Soc. 385, L5 (2008)

    Article  ADS  Google Scholar 

  21. Colaiuda, A., Beyer, H., Kokkotas, K.D.: Mon. Not. R. Astron. Soc. 396, 1441 (2009)

    Article  ADS  Google Scholar 

  22. Cérda-Durán, P., Stergioulas, N., Font, J.A.: Mon. Not. R. Astron. Soc. 397, 1607 (2009)

    Article  ADS  Google Scholar 

  23. Andersson, N., Glampedakis, K., Samuelsson, L.: Mon. Not. R. Astron. Soc. 396, 894 (2009)

    Article  ADS  Google Scholar 

  24. Sotani, H.: Mon. Not. R. Astron. Soc. 417, L70 (2011)

    Article  ADS  Google Scholar 

  25. van Hoven, M., Levin, Y.: Mon. Not. R. Astron. Soc 410, 1036 (2011)

    Article  ADS  Google Scholar 

  26. Gabler, M., Cérda-Durán, P., Font, J.A., Müller, E., Stergioulas, N.: Mon. Not. R. Astron. Soc. 421, 2054 (2012)

    Article  ADS  Google Scholar 

  27. Colaiuda, A., Kokkotas, K.D.: Mon. Not. R. Astron. Soc. 423, 811 (2012)

    Article  ADS  Google Scholar 

  28. Sotani, H., Nakazato, K., Iida, K., Oyamatsu, K.: Phys. Rev. Lett. 108, 201101 (2012)

    Article  ADS  Google Scholar 

  29. Sotani, H., Nakazato, K., Iida, K., Oyamatsu, K.: Mon. Not. R. Astron. Soc. 428, L21 (2013)

    Article  ADS  Google Scholar 

  30. Sotani, H., Nakazato, K., Iida, K., Oyamatsu, K.: Mon. Not. R. Astron. Soc. 434, 2060 (2013)

    Article  ADS  Google Scholar 

  31. van Hoven, M., Levin, Y.: Mon. Not. R. Astron. Soc 420, 3035 (2012)

    Article  ADS  Google Scholar 

  32. Watts, A.L., Strohmayer, T.E.: Adv. Space Res. 40, 1446 (2006)

    Article  ADS  Google Scholar 

  33. Abadie, J., et al.: Astrophys. J. 734, L35 (2011)

    Article  ADS  Google Scholar 

  34. Palenzuela, C., Lehner, L., Liebling, S.L.: Science 329, 927 (2010)

    Article  ADS  Google Scholar 

  35. Palenzuela, C., Garrett, T., Lehner, L., Liebling, S.L.: Phys. Rev. D 82, 044045 (2010)

    Article  ADS  Google Scholar 

  36. Mösta, P., Palenzuela, C., Rezzolla, L., Lehner, L., Yoshida, S., Pollney, D.: Phys. Rev. D 81, 064017 (2010)

    Google Scholar 

  37. Alic, D., Moesta, P., Rezzolla, L., Zanotti, O., Jaramillo, J.L.: Astrophys. J. 754, 36 (2012)

    Google Scholar 

  38. Lehner, L., Palenzuela, C., Liebling, S.L., Thompson, C., Hanna, C.: Phys. Rev. D 86, 104035 (2012)

    Article  ADS  Google Scholar 

  39. Dionysopoulou, K., Alic, D., Palenzuela, C., Rezzolla, L., Giacomazzo, B.: Phys. Rev. D 88, 044020 (2013)

    Google Scholar 

  40. Palenzuela, C., Lehner, L., Ponce, M., Liebling, S.L., Anderson, M., Neilsen, D., Motl, P.: Phys. Rev. Lett. 111, 061105 (2013)

    Article  ADS  Google Scholar 

  41. Palenzuela, C., Lehner, L., Liebling, S.L., Ponce, M., Anderson, M., Neilsen, D., Motl, P.: Phys. Rev. D 88, 043011 (2013)

    Article  ADS  Google Scholar 

  42. Rezzolla, L., Giacomazzo, B., Baiotti, L., Granot, J., Kouveliotou, C., Aloy, M.A.: Astrophys. J. 732, L6 (2011)

  43. Paschalidis, V., Etienne, Z.B., Shapiro, S.L.: Phys. Rev. D 88, 021504(R) (2013)

  44. Tanaka, M., Hotokezaka, K.: Astrophys. J. 775, 113 (2013)

    Google Scholar 

  45. Hotokezaka,K., Kyutoku, K., Tanaka, M., Kiuchi, K., Sekiguchi, Y., Shibata, M., Wanajo, S.: Astrophys. J. 778, L16 (2013)

  46. Sotani, H., Kokkotas, K.D., Laguna, P., Sopuerta, C.F.: Phys. Rev. D 87, 084018 (2013)

    Article  ADS  Google Scholar 

  47. Kouretsis, A.P., Tsagas, C.G.: Phys. Rev. D 88, 044006 (2013)

    Article  ADS  Google Scholar 

  48. Schutz, B.F.: Introduction to General Relativity. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  49. Wasserman, I., Shapiro, S.L.: Astrophys. J. 265, 1036 (1983)

    Article  ADS  Google Scholar 

  50. Tchekhovskoy, A., Narayan, R., McKinney, J.C.: Mon. Not. R. Astron. Soc. 418, L79 (2011)

    Article  ADS  Google Scholar 

  51. McKinney, J.C., Tchekhovskoy, A., Blandford, R.D.: Mon. Not. R. Astron. Soc. 423, 3083 (2012)

    Article  ADS  Google Scholar 

  52. Sotani, H., Saijo, M.: Phys. Rev. D 74, 024001 (2006)

    Article  ADS  Google Scholar 

  53. Teukolsky, S.A.: Phys. Rev. D 61, 087501 (2000)

    Article  ADS  Google Scholar 

  54. Cunningham, C.M., Price, R.H., Moncrief, V.: Astrophys. J. 224, 643 (1978)

    Article  ADS  Google Scholar 

  55. Cunningham, C.M., Price, R.H., Moncrief, V.: Astrophys. J. 230, 870 (1979)

    Article  ADS  Google Scholar 

  56. Woan, G.: A very low frequency radio telescope on the far side of the Moon. In: Measuring the Size of Things in the Universe: HBT Interferometry and Heavy Ion Physics, p. 347 (1999)

  57. Kondo, T., Kawano, N.: Low Frequency Obs on the Moon. Technical report, National Astronomical Observatory of Japan (1999)

  58. Allen, G., Andersson, N., Kokkotas, K.D., Schutz, B.F.: Rhys. Rev. D 58, 124012 (1998)

    Article  ADS  Google Scholar 

  59. Thorne, K.S.: Astrophys. J. 158, 997 (1969)

    Article  ADS  Google Scholar 

  60. Gaertig, E., Kokkotas, K.D.: Phys. Rev. D 83, 064031 (2011)

    Article  ADS  Google Scholar 

  61. Kokkotas, K.D., Schutz, B.F.: Mon. Not. R. Astron. Soc. 255, 119 (1992)

    ADS  Google Scholar 

Download references

Acknowledgments

H.S. is grateful to Y. Sekiguchi for valuable comments. H.S., K.K., and P.L. acknowledge the support and hospitality of the YITP (Kyoto) during the workshop “YKIS2013”, where a significant part of the work has been done. This work was supported by the German Science Foundation (DFG) via SFB/TR7, by Grants-in-Aid for Scientific Research on Innovative Areas through No. 24105001, and No. 24105008 provided by MEXT, by Grant-in-Aid for Young Scientists (B) through No. 24740177 provided by JSPS, by the Yukawa International Program for Quark-hadron Sciences, and by the Grant-in-Aid for the global COE program “The Next Generation of Physics, Spun from Universality and Emergence” from MEXT. P.L. is supported by NSF grants 1205864, 1205864, 0903973, 0855423. C.F.S. is supported by contracts AYA-2010-15709 and FIS2011-30145-C03-03 of the Spanish Ministry of Science and Innovation, and contract 2009-SGR-935 of AGAUR (Generalitat de Catalunya).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajime Sotani.

Appendix

Appendix

In this appendix, we present the perturbation equations for gravitational and electromagnetic waves adopted in this paper. More details can be found in Paper I [46]. Using the well-known Regge-Wheeler gauge, the metric perturbations, \(h_{\mu \nu }\), with polar parity can be decomposed into tensor spherical harmonics as

$$\begin{aligned} h_{\mu \nu } = \sum _{l=2}^{\infty } \sum _{m=-l}^{l}\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} e^{\nu } H_{0,lm} &{} H_{1,lm} &{} 0 &{} 0 \\ *&{} e^{\lambda } H_{2,lm} &{} 0 &{} 0 \\ 0 &{} 0 &{} r^2 K_{lm} &{} 0 \\ 0 &{} 0 &{} 0 &{} r^2 \sin ^2\theta K_{lm} \\ \end{array} \right) Y_{lm}, \end{aligned}$$
(8)

where \(H_{0,lm}, H_{1,lm}, H_{2,lm}\), and \(K_{lm}\) are functions of \(t\) and \(r\) only, and \(Y_{lm}=Y_{lm}(\theta ,\phi )\) denotes the scalar spherical harmonics on the \(2-\)sphere. On the other hand, the tensor harmonic expansion for the “magnetic” multipoles (or axial parity) of the electromagnetic perturbations, \(f_{\mu \nu }\), is given by

$$\begin{aligned} f_{\mu \nu }^\mathrm{(M)} = \sum _{l=2}^{\infty } \sum _{m=-l}^{l}\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} 0 &{} &{} 0 &{} &{} f^\mathrm{(M)}_{02,lm} {\sin ^{-1}\theta } \partial _{\phi } &{} &{}-f^\mathrm{(M)}_{02,lm} \sin \theta \, \partial _{\theta } \\ 0&{} &{} 0 &{} &{}f^\mathrm{(M)}_{12,lm} {\sin ^{-1}\theta } \partial _{\phi } &{} &{}-f^\mathrm{(M)}_{12,lm} \sin \theta \, \partial _{\theta } \\ *&{} &{} *&{} &{} 0 &{}&{} f^\mathrm{(M)}_{23,lm}\sin \theta \\ *&{} &{} *&{}&{} *&{}&{} 0 \\ \end{array} \right) Y_{lm}, \end{aligned}$$
(9)

where \(f_{02}^\mathrm{(M)}, f_{12}^\mathrm{(M)}\), and \(f_{23}^\mathrm{(M)}\) are also functions of \(t\) and \(r\) only.

1.1 Neutron-star background

For the perturbations around the neutron star background, we adopt the formalism derived by Allen et al. [58], where the perturbations are described by three coupled wave-type equations, i.e., two equations describe the perturbations of the spacetime and the other one describes the fluid perturbations. In addition to the three wave equations, there is also a constraint equation. The two wave equations for the spacetime variables are

$$\begin{aligned}&-\frac{\partial ^2 S_{lm}}{\partial t^2} + \frac{\partial ^2 S_{lm}}{\partial r_*^2} + \frac{2 e^\nu }{r^3}\left[ 2 \pi r^3 (\rho +3p) + m - (n+1)r \right] S_{lm} \nonumber \\&\quad = -\frac{4 e^{2\nu }}{r^5} \left[ \frac{(m+4\pi p r^3)^2}{r-2m} + 4\pi \rho r^3 - 3m \right] F_{lm}\end{aligned}$$
(10)
$$\begin{aligned}&-\frac{\partial ^2 F_{lm}}{\partial t^2} + \frac{\partial ^2 F_{lm}}{\partial r_*^2} + \frac{2 e^\nu }{r^3} \left[ 2 \pi r^3 (3 \rho + p) + m - (n+1)r \right] F_{lm} \nonumber \\&\quad = - 2\left[ 4 \pi r^2 (p+\rho ) - e^{-\lambda } \right] S_{lm} + 8 \pi (\rho +p) {r e^{\nu }} \left( 1- \frac{1}{C_s^2} \right) H_{lm}, \end{aligned}$$
(11)

where \(r_*\) is the tortoise coordinate defined as \(\partial _{r_*} =e^{(\nu -\lambda )/2}\partial _r\), \(n \equiv (l-1)(l+2)/2\), \(C_s\) is the fluid sound speed, and \(F_{lm}\), \(S_{lm}\), and \(H_{lm}\) are given by

$$\begin{aligned} F_{lm}(t,r)&= rK_{lm}, \end{aligned}$$
(12)
$$\begin{aligned} S_{lm}(t,r)&= \frac{e^{\nu }}{r}\left( H_{0,lm} -K_{lm}\right) , \end{aligned}$$
(13)
$$\begin{aligned} H_{lm}(t,r)&= \frac{\delta p_{lm}}{\rho +p}. \end{aligned}$$
(14)

On the other hand, the wave equation for the perturbations of the relativistic enthalpy, \(H_{lm}\), describing the fluid perturbations, is

$$\begin{aligned}&- \frac{1}{C_s^2}\frac{\partial ^2 H_{lm}}{\partial t^2} + \frac{\partial ^2 H_{lm}}{\partial r_*^2} + \frac{e^{(\nu +\lambda )/2}}{r^2}\left[ (m + 4\pi p r^3)\left( 1-\frac{1}{C_s^2}\right) + 2 (r-2m) \right] \frac{\partial H_{lm}}{\partial r_*} \nonumber \\&\qquad + \frac{2 e^\nu }{r^2} \left[ 2 \pi r^2 (\rho +p)\left( 3 + \frac{1}{C_s^2} \right) - (n+1) \right] H_{lm} \nonumber \\&\qquad \qquad = (m+4 \pi p r^3)\left( 1-\frac{1}{C_s^2}\right) \frac{e^{(\lambda -\nu )/2}}{2 r} \left( \frac{e^\nu }{r^2}\frac{\partial F_{lm}}{\partial r_*} - \frac{\partial S_{lm}}{\partial r_*} \right) \nonumber \\&\qquad \qquad \qquad + \left[ \frac{(m+4\pi p r^3)^2}{r^2(r-2m)}\left( 1+\frac{1}{C_s^2}\right) - \frac{ m+4\pi p r^3}{2 r^2} \left( 1-\frac{1}{C_s^2}\right) -4\pi r (3p+\rho ) \right] S_{lm} \nonumber \\&\qquad \qquad \qquad + \frac{e^\nu }{r^2}\left[ \frac{2(m+4\pi p r^3)^2}{r^2(r-2m)}\frac{1}{C_s^2} - \frac{ m+4\pi p r^3}{2 r^2}\left( 1-\frac{1}{C_s^2} \right) -4\pi r (3p+\rho )\right] F_{lm}.\nonumber \\ \end{aligned}$$
(15)

This third wave equation is valid only inside the star. On the other hand, the first two wave equations are simplified considerably outside the star, and they can be reduced to a single wave equation, i.e., the Zerilli equation (see [58] and §4.2). Finally, the Hamiltonian constraint,

$$\begin{aligned}&\frac{\partial ^2 F_{lm}}{\partial r_*^2} - \frac{e^{(\nu +\lambda )/2}}{r^2} \left( m + 4 \pi r^3 p \right) \frac{\partial F_{lm}}{\partial r_*} + \frac{e^\nu }{r^3} \left[ 12\pi r^3 \rho - m - 2(n+1)r \right] F_{lm} \nonumber \\&\qquad - r e^{-(\nu +\lambda )/2}\frac{\partial S_{lm}}{\partial r_*} + \left[ 8\pi r^2(\rho +p) -(n+3) + \frac{4m}{r} \right] S_{lm} \nonumber \\&\qquad + \frac{8 \pi r}{C_s^2} e^\nu (\rho +p) H_{lm} = 0, \end{aligned}$$
(16)

can be used for setting up initial data and monitoring the evolution of the coupled system.

Finally, the perturbation equation for the “magnetic-type” (axial) electromagnetic perturbations outside the neutron star is

$$\begin{aligned} \frac{\partial ^2 \Phi _{10}}{\partial t^2} - \frac{\partial ^2 \Phi _{10}}{\partial r_*^2} + \frac{2}{r^2}e^{\nu }\Phi _{10} = \mathcal{S}_{20}^\mathrm{(M)}, \end{aligned}$$
(17)

where \(\Phi _{lm} \equiv f_{23,lm}^\mathrm{(M)}\) and

$$\begin{aligned} \mathcal{S}_{20}^\mathrm{(M)}&= -\frac{2}{\sqrt{15}}e^{\nu }\bigg [\left( 2B_2 + r {B_2}'\right) r^2S_{20} \nonumber \\&\quad + \left( e^{\nu }B_2 + re^{\nu }{B_2}' - \frac{2}{r}B_1\right) F_{20} + rB_2 \frac{\partial F_{20}}{\partial r_*}\bigg ]. \end{aligned}$$
(18)

1.2 Black-hole background

The “magnetic-type” (axial) electromagnetic perturbations driven by the gravitational perturbations on a black hole background are also governed by the same equation as the one derived for the exterior region of neutron stars [see Eq. (17)], that is

$$\begin{aligned} \frac{\partial ^2 \Phi _{10}}{\partial t^2} - \frac{\partial ^2 \Phi _{10}}{\partial r_*^2} + \frac{2}{r^2}e^{\nu }\Phi _{10} = \mathcal{S}_{20}^\mathrm{(M)}. \end{aligned}$$
(19)

The source term of this wave equation, \(\mathcal{S}_{20}^{(\mathrm M)}\), has the same form as in Eq. (18). On the other hand, and is well-known, the spacetime metric perturbations are described by a single equation, the Zerilli equation

$$\begin{aligned}&\frac{\partial ^2 Z_{lm}}{\partial t^2}-\frac{\partial ^2 Z_{lm}}{\partial r_*^2} + V_Z(r)Z_{lm} = 0\end{aligned}$$
(20)
$$\begin{aligned}&V_{Z}(r) =\frac{2e^{\nu }\left[ n^2(n +1)r^3 + 3Mn^2 r^2 + 9M^2n r + 9M^3\right] }{r^3(nr + 3M)^2}. \end{aligned}$$
(21)

In the same way as in the case of the neutron star background, one can also adopt \(F_{lm}\) and \(S_{lm}\) as the perturbation variables for the spacetime oscillations. Actually, one can obtain the variables \(F_{lm}\) and \(S_{lm}\) from the Zerilli function \(Z_{lm}\) using the following expressions:

$$\begin{aligned} F_{lm}&= r\frac{dZ_{lm}}{dr_*}+\frac{n(n+1)r^2+3 n Mr+6M^2}{r(n r+3M)}Z_{lm},\end{aligned}$$
(22)
$$\begin{aligned} S_{lm}&= \frac{1}{r}\frac{dF_{lm}}{dr_*}-\frac{(n+2)r-M}{r^3}F_{lm}+\frac{(n+1)(n r+3M)}{r^3}Z_{lm}. \end{aligned}$$
(23)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sotani, H., Kokkotas, K.D., Laguna, P. et al. Electromagnetic waves from neutron stars and black holes driven by polar gravitational perturbations. Gen Relativ Gravit 46, 1675 (2014). https://doi.org/10.1007/s10714-014-1675-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1675-5

Keywords

Navigation