Skip to main content
Log in

Anisotropic Anelastic Impedance Inversion for Attenuation Factor and Weaknesses Combining Newton and Bayesian Markov Chain Monte Carlo Algorithms

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The problem of frequency-dependent seismic inversion for estimating attenuation and anisotropy based on rock physics effective model is reviewed and analyzed. Based on an extended periodically layered medium model, frequency-dependent stiffness parameters of anisotropic anelastic media as a function of attenuation factor and weaknesses are presented. For the case of an interface separating two anisotropic anelastic media, a new parameterized P-to-P reflection coefficient and anisotropic anelastic impedance \({\mathcal {A}}_\mathrm{EI}\) are proposed. Based on the anisotropic \({\mathcal {A}}_\mathrm{EI}\), an inversion workflow of employing frequency components of seismic amplitudes to estimate attenuation factor and weaknesses for anisotropic anelastic media is presented. In the first stage inversion, the anisotropic \({\mathcal {A}}_\mathrm{EI}\) is calculated using frequency components of partially incidence-angle-stacked seismic data; and the second-stage inversion for unknown attenuation factor and weaknesses is implemented combining a Newton method and Bayesian Markov chain Monte Carlo algorithm by calculating first- and second-order derivatives of anisotropic \({\mathcal {A}}_\mathrm{EI}\) with respect to unknown parameters. Tests on synthetic seismic gathers confirm the accuracy of new parameterized reflection coefficient, and the unknown parameters are estimated reliably even in the case of seismic data of signal-to-noise ratio of 2 being employed. Applying the inversion approach and workflow to a field data set acquired over a shale reservoir, reliable attenuation factors and weaknesses that match well log curves are obtained, which are preserved as indicators for identifying potential hydrocarbon-bearing cracked reservoirs.

Article Highlights

  • A new parameterized PP-wave reflection coefficient and anisotropic anelastic impedance are derived in terms of attenuation factor and weaknesses

  • A two-stage inversion workflow of employing frequency components of seismic data to estimate attenuation factor and weaknesses combining Newton method and Bayesian Markov chain MonteCarlo algorithm

  • Reliably estimated attenuation factor and weakness that match well log curves appear to be indicators or identification of potential cracked reservoirs

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Agersborg R, Johansen TA, Jakobsen M, Sothcott J, Best A (2008) Effects of fluids and dual-pore systems on pressure-dependent velocities and attenuations in carbonates. Geophysics 73(5):N35–N47

    Article  Google Scholar 

  • Aki K, Richards PG (2002) Quantitative seismology. University science books

  • Alkhalifah T, Tsvankin I (1995) Velocity analysis for transversely isotropic media. Geophysics 60(5):1550–1566

    Article  Google Scholar 

  • Bachrach R, Sengupta M, Salama A, Miller P (2009) Reconstruction of the layer anisotropic elastic parameters and high-resolution fracture characterization from P-wave data: a case study using seismic inversion and Bayesian rock physics parameter estimation. Geophys Prospect 57(2):253–262

    Article  Google Scholar 

  • Backus GE (1962) Long-wave elastic anisotropy produced by horizontal layering. J Geophys Res 67(11):4427–4440

    Article  Google Scholar 

  • Bakulin A, Grechka V, Tsvankin I (2000) Estimation of fracture parameters from reflection seismic data-Part I: HTI model due to a single fracture set. Geophysics 65(6):1788–1802

    Article  Google Scholar 

  • Behura J, Tsvankin I (2009) Reflection coefficients in attenuative anisotropic media. Geophysics 74(5):WB193–WB202

    Article  Google Scholar 

  • Bird C (2012) Amplitude-variation-with frequency (AVF) analysis of seismic data over anelastic targets. Master’s thesis, University of Calgary

  • Borcherdt RD (2009) Viscoelastic waves in layered media. Cambridge University Press

  • Brajanovski M, Gurevich B, Schoenberg M (2005) A model for P-wave attenuation and dispersion in a porous medium permeated by aligned fractures. Geophys J Int 163(1):372–384

    Article  Google Scholar 

  • Brajanovski M, Müller TM, Gurevich B (2006) Characteristic frequencies of seismic attenuation due to wave-induced fluid flow in fractured porous media. Geophys J Int 166(2):574–578

    Article  Google Scholar 

  • Brajanovski M, Müller TM, Parra JO (2010) A model for strong attenuation and dispersion of seismic P-waves in a partially saturated fractured reservoir. Sci China Phys Mech Astron 53(8):1383–1387

    Article  Google Scholar 

  • Carcione JM (2015) Wave fields in real media: wave propagation in anisotropic, anelastic, porous and electromagnetic media, vol 38. Elsevier

  • Carcione JM, Gurevich B, Santos JE, Picotti S (2013) Angular and frequency-dependent wave velocity and attenuation in fractured porous media. Pure Appl Geophys 170(11):1673–1683

    Article  Google Scholar 

  • Chapman M (2003) Frequency-dependent anisotropy due to meso-scale fractures in the presence of equant porosity. Geophys Prospect 51(5):369–379

    Article  Google Scholar 

  • Chapman M, Liu E, Li XY (2006) The influence of fluid sensitive dispersion and attenuation on AVO analysis. Geophys J Int 167(1):89–105

    Article  Google Scholar 

  • Chen H, Innanen KA (2018) Estimation of fracture weaknesses and integrated attenuation factors from azimuthal variations in seismic amplitudes. Geophysics 83(6):R711–R723

    Article  Google Scholar 

  • Chen H, Zhang G (2017) Estimation of dry fracture weakness, porosity, and fluid modulus using observable seismic reflection data in a gas-bearing reservoir. Surv Geophys 38(3):651–678

    Article  Google Scholar 

  • Chen H, Pan X, Ji Y, Zhang G (2017) Bayesian Markov Chain Monte Carlo inversion for weak anisotropy parameters and fracture weaknesses using azimuthal elastic impedance. Geophys J Int 210(2):801–818

    Article  Google Scholar 

  • Chen H, Innanen KA, Chen T (2018) Estimating P-and S-wave inverse quality factors from observed seismic data using an attenuative elastic impedance. Geophysics 83(2):R173–R187

    Article  Google Scholar 

  • Chen H, Ji Y, Innanen KA (2018) Estimation of modified fluid factor and dry fracture weaknesses using azimuthal elastic impedance. Geophysics 83(1):WA73–WA88

    Article  Google Scholar 

  • Chen H, Zhang G, Chen T, Yin X (2018) Joint PP-and PSV-wave amplitudes versus offset and azimuth inversion for fracture compliances in horizontal transversely isotropic media. Geophys Prospect 66(3):561–578

    Article  Google Scholar 

  • Downton J, Roure B (2010) Azimuthal simultaneous elastic inversion for fracture detection. In: SEG technical program expanded abstracts 2010, Society of Exploration Geophysicists, pp 263–267

  • Downton JE, Roure B (2015) Interpreting azimuthal Fourier coefficients for anisotropic and fracture parameters. Interpretation 3(3):ST9–ST27

    Article  Google Scholar 

  • Dupuy B, Stovas A (2016) Effect of anelastic patchy saturated sand layers on the reflection and transmission responses of a periodically layered medium. Geophys prospect 64(2):299–319

    Article  Google Scholar 

  • Dvorkin JP, Mavko G (2006) Modeling attenuation in reservoir and nonreservoir rock. Lead Edge 25(2):194–197

    Article  Google Scholar 

  • Galvin RJ, Gurevich B (2015) Frequency-dependent anisotropy of porous rocks with aligned fractures. Geophys Prospect 63(1):141–150

    Article  Google Scholar 

  • Grechka V, Tsvankin I, Bakulin A, Hansen JO, Signer C (2002) Joint inversion of PP and PS reflection data for VTI media: A North Sea case study

  • Guo J, Germán Rubino J, Barbosa ND, Glubokovskikh S, Gurevich B (2018) Seismic dispersion and attenuation in saturated porous rocks with aligned fractures of finite thickness: theory and numerical simulations-part 1: P-wave perpendicular to the fracture plane. Geophysics 83(1):WA49–WA62

    Article  Google Scholar 

  • Guo J, Han T, Fu LY, Xu D, Fang X (2019) Effective elastic properties of rocks with transversely isotropic background permeated by aligned penny-shaped cracks. J Geophys Res Solid Earth 124(1):400–424

    Article  Google Scholar 

  • Gurevich B, Brajanovski M, Galvin RJ, Müller TM, Toms-Stewart J (2009) P-wave dispersion and attenuation in fractured and porous reservoirs-poroelasticity approach. Geophys Prospect 57(2):225–237

    Article  Google Scholar 

  • Hsu CJ, Schoenberg M (1993) Elastic waves through a simulated fractured medium. Geophysics 58(7):964–977

    Article  Google Scholar 

  • Innanen KA (2011) Inversion of the seismic AVF/AVA signatures of highly attenuative targets. Geophysics 76(1):R1–R14

    Article  Google Scholar 

  • Köhn D (2011) Time domain 2D elastic full waveform tomography. PhD thesis, Christian-Albrechts Universität Kiel

  • Kong L, Gurevich B, Müller TM, Wang Y, Yang H (2013) Effect of fracture fill on seismic attenuation and dispersion in fractured porous rocks. Geophys J Int 195(3):1679–1688

    Article  Google Scholar 

  • Li Y (2006) An empirical method for estimation of anisotropic parameters in clastic rocks. Lead Edge 25(6):706–711

    Article  Google Scholar 

  • Lines L, Wong J, Innanen K, Vasheghani F, Sondergeld C, Treitel S, Ulrych T (2014) Research note: experimental measurements of q-contrast reflections. Geophys Prospect 62(1):190–195

    Article  Google Scholar 

  • Margrave GF (2013) Q tools: summary of CREWES software for Q modelling and analysis. The 25th annual report of the CREWES project

  • Mavko G, Jizba D (1991) Estimating grain-scale fluid effects on velocity dispersion in rocks. Geophysics 56(12):1940–1949

    Article  Google Scholar 

  • Moradi S, Innanen KA (2015) Scattering of homogeneous and inhomogeneous seismic waves in low-loss viscoelastic media. Geophys J Int 202(3):1722–1732

    Article  Google Scholar 

  • Moradi S, Innanen KA (2016) Viscoelastic amplitude variation with offset equations with account taken of jumps in attenuation angle. Geophysics 81(3):N17–N29

    Article  Google Scholar 

  • Müller TM, Gurevich B, Lebedev M (2010) Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks-a review. Geophysics 75(5):75A147-75A164

    Article  Google Scholar 

  • Pan W, Innanen KA, Margrave GF, Fehler MC, Fang X, Li J (2016) Estimation of elastic constants for HTI media using Gauss-Newton and full-Newton multiparameter full-waveform inversion. Geophysics 81(5):R275–R291

    Article  Google Scholar 

  • Pan X, Zhang G, Yin X (2017) Azimuthally anisotropic elastic impedance inversion for fluid indicator driven by rock physics. Geophysics 82(6):C211–C227

    Article  Google Scholar 

  • Pšenčík I, Gajewski D (1998) Polarization, phase velocity, and NMO velocity of qP-waves in arbitrary weakly anisotropic media. Geophysics 63(5):1754–1766

    Article  Google Scholar 

  • Pšenčík I, Vavryčuk V (1998) Weak contrast PP wave displacement R/T coefficients in weakly anisotropic elastic media. Pure Appl Geophys 151(2):699–718

    Article  Google Scholar 

  • Quintal B, Jänicke R, Rubino JG, Steeb H, Holliger K (2014) Sensitivity of S-wave attenuation to the connectivity of fractures in fluid-saturated rocks. Geophysics 79(5):WB15–WB24

    Article  Google Scholar 

  • Rowbotham P, Marion D, Eden R, Williamson P, Lamy P, Swaby P (2003) The implications of anisotropy for seismic impedance inversion. First Break, 21(5)

  • Rüger A (1998) Reflection coefficients and azimuthal AVO analysis in anisotropic media. PhD thesis, Colorado School of Mines

  • Rüger A, Tsvankin I (1997) Using AVO for fracture detection: analytic basis and practical solutions. Lead Edge 16(10):1429–1434

    Article  Google Scholar 

  • Schoenberg M, Protazio J (1990) \(^{\prime }\)Zoeppritz\(^{\prime }\) rationalized, and generalized to anisotropic media. J Acoust Soc Am 88(S1):S46–S46

    Google Scholar 

  • Schoenberg M, Sayers CM (1995) Seismic anisotropy of fractured rock. Geophysics 60(1):204–211

    Article  Google Scholar 

  • Shaw RK, Sen MK (2004) Born integral, stationary phase and linearized reflection coefficients in weak anisotropic media. Geophys J Int 158(1):225–238

    Article  Google Scholar 

  • Shaw RK, Sen MK (2006) Use of AVOA data to estimate fluid indicator in a vertically fractured medium. Geophysics 71(3):C15–C24

    Article  Google Scholar 

  • Shuai D, Stovas A, Wei J, Di B, Zhao Y (2021) Effective elastic properties of rocks with transversely isotropic background permeated by a set of vertical fracture cluster. Geophysics 86(3):C75–C87

    Article  Google Scholar 

  • Thomsen L (1986) Weak elastic anisotropy. Geophysics 51(10):1954–1966

    Article  Google Scholar 

  • Tsvankin I (1996) P-wave signatures and notation for transversely isotropic media: an overview. Geophysics 61(2):467–483

    Article  Google Scholar 

  • Tsvankin I (1997) Reflection moveout and parameter estimation for horizontal transverse isotropy. Geophysics 62(2):614–629

    Article  Google Scholar 

  • Vogelaar B, Smeulders D (2007) Extension of White’s layered model to the full frequency range. Geophys Prospect 55(5):685–695

    Article  Google Scholar 

  • Whitcombe DN (2002) Elastic impedance normalization. Geophysics 67(1):60–62

    Article  Google Scholar 

  • Zhang F, Zhang T, Li XY (2019) Seismic amplitude inversion for the transversely isotropic media with vertical axis of symmetry. Geophys Prospect 67(9-Advances in Seismic Anisotropy):2368–2385

  • Zhang G, Li L, Pan X, Li H, Liu J, Han L (2020) Azimuthal fourier coefficient inversion for horizontal and vertical fracture characterization in weakly orthorhombic media. Geophysics 85(6):C199–C214

    Article  Google Scholar 

  • Zeng J, Stovas A, Huang H (2020) Anisotropic attenuation of stratified viscoelastic media. Geophys Prospect 69:180–203

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by The National Natural Science Foundation of China (42104109). This work was also supported by the Natural Science Foundation of Shanghai (21ZR1464700), the Shanghai Sailing Project, and the Fundamental Research Funds for the Central Universities. We thank the sponsors of CREWES for continued support. We acknowledge Hampson-Russell software package for processing seismic data and extracting wavelets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaizhen Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Derivation and simplification of stiffness parameters and perturbations across the interface

In Eq. 2, we present stiffness parameters of the PLM, and under the assumptions that \(\frac{h_\mathrm{c}}{H}{\rightarrow }0\) and \(\frac{h_\mathrm{b}}{H}{\approx }1\), we simplify the stiffness parameters in terms of weaknesses. Taking \(C_{11}\) as an example, we obtain

$$\begin{aligned} \begin{aligned} {{C}_{11}}&=\frac{{{H}^{2}}{{{\mathcal {M}}}_{\text {c}}}{{{\mathcal {M}}}_{\text {b}}}+4{{h}_{\text {c}}}{{h}_{\text {b}}}\left( {{{\mathcal {U}}}_{\text {c}}}-{{{\mathcal {U}}}_{\text {b}}} \right) \left( {{{\mathcal {M}}}_{\text {c}}}-{{{\mathcal {U}}}_{\text {c}}}-{{{\mathcal {M}}}_{\text {b}}}+{{{\mathcal {U}}}_{\text {b}}} \right) }{H\left( {{h}_{\text {c}}}{{{\mathcal {M}}}_{\text {b}}}+{{h}_{\text {b}}}{{{\mathcal {M}}}_{\text {c}}} \right) }\\&{\approx } \frac{1+\frac{4\left( {{{\mathcal {U}}}_{\text {c}}}-{{{\mathcal {U}}}_{\text {b}}} \right) \left( {{{\mathcal {M}}}_{\text {c}}}-{{{\mathcal {U}}}_{\text {c}}}-{{{\mathcal {M}}}_{\text {b}}}+{{{\mathcal {U}}}_{\text {b}}} \right) }{{{{\mathcal {M}}}_{\text {b}}}}{{Z}_{\text{N}}}}{{{Z}_{\text{N}}}+\frac{1}{{{{\mathcal {M}}}_{\text {b}}}}}, \end{aligned} \end{aligned}$$
(A.1)

where \({{Z}_{\text{N}}}{\approx }\lim \limits _{h_\mathrm{c}\rightarrow 0}\frac{{{h}_{\text {c}}}}{H{{{\mathcal {M}}}_{\text {c}}}}\). In the case of fluid filled compliant layers (fractures or cracks), we assume \(\frac{{\mathcal {M}}_\mathrm{c}}{{\mathcal {M}}_\mathrm{b}}{\approx }0\) and \(\frac{{\mathcal {U}}_\mathrm{c}}{{\mathcal {M}}_\mathrm{b}}{\approx }0\), and we further simplify \(C_{11}\) as

$$\begin{aligned} \begin{aligned} {{C}_{11}}\approx \frac{1+4\left( -{{\kappa }_{\text {b}}} \right) \left( -{{{\mathcal {M}}}_{\text {b}}}+{{{\mathcal {U}}}_{\text {b}}} \right) {{Z}_{\text{N}}}}{{{Z}_{ \text{N}}}+\frac{1}{{{{\mathcal {M}}}_{\text {b}}}}}, \end{aligned} \end{aligned}$$
(A.2)

where \({\kappa }_\mathrm{b}={{\mathcal {U}}_\mathrm{b}}/{{\mathcal {M}}_\mathrm{b}}\).

Using relationship \(\delta _{\text{N}}=\frac{{\mathcal {M}}_\mathrm{b}Z_{\text{N}}}{1+{\mathcal {M}}_\mathrm{b}Z_{\text{N}}}\), we rewrite equation A.2 as

$$\begin{aligned} \begin{aligned} {{C}_{11}}\approx {{{\mathcal {M}}}_{\text {b}}}\left[ 1-\left( 1-2{\kappa }_\mathrm{b}\right) ^{2}{\delta _{\text{N}}}\right] . \end{aligned} \end{aligned}$$
(A.3)

Other stiffness parameters are simplified as

$$\begin{aligned}&C_{12}{\approx }\left( {{{\mathcal {M}}}_\mathrm{b}}-2{{{\mathcal {U}}}_\mathrm{b}}\right) \left[ 1-\left( 1-2{{\kappa }_\mathrm{b}}\right) {{\delta }_{\text{N}}}\right] , \nonumber \\&\quad C_{13}{\approx }\left( {{{\mathcal {M}}}_\mathrm{b}}-2{{{\mathcal {U}}}_\mathrm{b}}\right) \left( 1-{{\delta }_{ \text{N}}}\right) , \nonumber \\&\quad C_{33}{\approx }{{{\mathcal {M}}}_\mathrm{b}}\left( 1-{{\delta }_{\text{N}}}\right) . \end{aligned}$$
(A.4)

Similar to the simplification of \(C_{11}\), we express \(C_{55}\) and \(C_{66}\) as

$$\begin{aligned}&{{C}_{55}}=\frac{H{{{\mathcal {U}}}_{\text {c}}}{{{\mathcal {U}}}_{\text {b}}}}{{{h}_{\text {c}}}{{{\mathcal {U}}}_{\text {b}}}+{{h}_{\text {b}}}{{{\mathcal {U}}}_{\text {c}}}}=\frac{1}{\frac{{{h}_{\text {c}}}{{{\mathcal {U}}}_{\text {b}}}}{H{{{\mathcal {U}}}_{\text {c}}}{{{\mathcal {U}}}_{\text {b}}}}+\frac{{{h}_{\text {b}}}{{{\mathcal {U}}}_{\text {c}}}}{H{{{\mathcal {U}}}_{\text {c}}}{{{\mathcal {U}}}_{\text {b}}}}}{\approx } \frac{1}{{{Z}_\text {T}}+\frac{1}{{{{\mathcal {U}}}_{\text {b}}}}}={{{\mathcal {U}}}_{\text {b}}}\left( 1-{{\delta }_{T}} \right) , \nonumber \\&\quad {{C}_{66}}=\frac{{{h}_{\text {c}}}{{{\mathcal {U}}}_{\text {c}}}+{{h}_{\text {b}}}{{{\mathcal {U}}}_{\text {b}}}}{H}{\approx } \frac{{{h}_{\text {c}}}{{{\mathcal {U}}}_{\text {c}}}}{H}+{{{\mathcal {U}}}_{\text {b}}}{\approx } {{{\mathcal {U}}}_{\text {b}}}, \end{aligned}$$
(A.5)

under the assumption that \(\frac{h_\mathrm{c}}{H}{\approx }0\).

In Eq. 5, we show the frequency-dependent stiffness parameters of the extended PLM model, and using the frequency-dependent stiffness parameters, we next show perturbations in stiffness parameters in the case of an interface separating two anisotropic anelastic media. Again taking \(C_{11}\) as an example, we obtain the perturbation \({\varDelta }C_{11}\) as

$$\begin{aligned} \begin{aligned} \varDelta {{C}_{11}}(f) {\approx }&\left( {{M}_{0}}+{\varDelta } M \right) \left[ 1+2\eta\; \left( f \right) \left( {{{{\mathcal {Q}}}_{\text{P}0}}}+\varDelta {{{\mathcal {Q}}}_{\text{P}}} \right) -{{\left( 1-2g \right) }^{2}}\left( {{\delta }_{\text{N}}}_{0}+\varDelta {{\delta }_{\text{N}}} \right) \right] \\&-{{M}_{0}}\left[ 1+2\eta\; \left( f \right) {{{{\mathcal {Q}}}_{\text{P}0}}}-{{\left( 1-2g \right) }^{2}}{{\delta }_{\text{N0}}} \right] \\ =&{{M}_{0}}\left[ 2\eta\; \left( f \right) \left( \varDelta {{{\mathcal {Q}}}_{\text{P}}} \right) -{{\left( 1-2g \right) }^{2}}\left( \varDelta {{\delta }_{\text{N}}} \right) \right] \\&+\varDelta M\left[ 1+2\eta\; \left( f \right) \left( {{{{\mathcal {Q}}}_\text{P0}}}+\varDelta {{{\mathcal {Q}}}_{\text{P}}} \right) -{{\left( 1-2g \right) }^{2}}\left( {{\delta }_{\text {N0}}}+\varDelta {{\delta }_{\text{N}}} \right) \right] , \end{aligned} \end{aligned}$$
(A.6)

where \(M_{0}\), \({{{\mathcal {Q}}}_{\text{P}0}}\) and \(\delta _{\text{N}0}\) represent P-wave modulus, attenuation factor and weakness of background, and \({\varDelta }M\), \({\varDelta }{{{\mathcal {Q}}}_{\text{P}}}\) and \({\varDelta }\delta _{\text{N}}\) represent changes in P-wave modulus, attenuation factor and weakness. Under the assumption of isotropic elastic background (\({{\mathcal {Q}}}_\text{P0}=0\) and \(\delta _\text{N0}=0\)), we further derive \(\varDelta {C}_{11}(f)\) as

$$\begin{aligned} \begin{aligned} \varDelta {{C}_{11}}(f) {\approx }&{{M}_{0}}\left[ 2\eta\; \left( f \right) \left( \varDelta {{{\mathcal {Q}}}_{\text{P}}} \right) -{{\left( 1-2g \right) }^{2}}\left( \varDelta {{\delta }_{\text{N}}} \right) \right] \\&+\varDelta M\left[ 1+2\eta\; \left( f \right) \left( \varDelta {{{\mathcal {Q}}}_{\text{P}}} \right) -{{\left( 1-2g \right) }^{2}}\left( \varDelta {{\delta }_{\text{N}}} \right) \right] , \end{aligned} \end{aligned}$$
(A.7)

and under the assumption that \({\varDelta }M\), \({\varDelta }{{{\mathcal {Q}}}_{\text{P}}}\) and \({\varDelta }{\delta _{\text{N}}}\) are not too large, we neglect the term proportional to \({\varDelta }M{\varDelta }{{{\mathcal {Q}}}_{\text{P}}}\) and \({\varDelta }M{\varDelta }{\delta _{\text{N}}}\) to further simplify \(\varDelta {C}_{11}\) as

$$\begin{aligned} \begin{aligned} \varDelta {{C}_{11}}(f)\approx \varDelta M+{{M}}\left[ 2\eta\;\left( f \right) \left( \varDelta {{{\mathcal {Q}}}_{\text{P}}} \right) -{{\left( 1-2g \right) }^{2}}\left( \varDelta {{\delta }_{\text{N}}} \right) \right] , \end{aligned} \end{aligned}$$
(A.8)

where we approximately replace \(M_{0}\) with M. Perturbations in other stiffness parameters, \(\varDelta {C}_{12}\), \(\varDelta {C}_{13}\) and \(\varDelta {C}_{33}\), are simplified as

$$\begin{aligned}&\varDelta {{C}_{12}} (f)\approx \varDelta M-2\varDelta \mu -\left( M-2\mu \right)\; \left( 1-2g \right)\; \varDelta {{\delta }_{\text{N}}} \nonumber \\&\quad +2M\eta\; \left( f \right) \left( \varDelta {{{\mathcal {Q}}}_{\text{P}}} \right) -4\mu \eta \left( f \right) \varepsilon \left( \varDelta {{{\mathcal {Q}}}_{\text{P}}} \right) , \nonumber \\&\quad \varDelta {{C}_{13}}(f)\approx \left( \varDelta M-2\varDelta \mu \right) -\left( M-2\mu \right)\; \varDelta {{\delta }_{\text{N}}} \nonumber \\&\quad +2M\eta \left(\; f \right) \left( \varDelta {{{\mathcal {Q}}}_{\text{P}}} \right) -4\mu \eta\; \left( f \right) \;\varepsilon \;\left( \varDelta {{{\mathcal {Q}}}_{\text{P}}} \right) , \nonumber \\&\quad \varDelta {{C}_{33}}(f)\approx \varDelta M+2M\eta\; \left( f \right) \varDelta {{{\mathcal {Q}}}_{\text{P}}}-M\varDelta {{\delta }_{\text{N}}}. \end{aligned}$$
(A.9)

The perturbation in stiffness parameter \(C_{55}\) expressed as

$$\begin{aligned}&\varDelta {{C}_{55}}(f)\approx \left( {{\mu}_{0}}+\varDelta \mu \right) \left[ 1+2\eta \left( f \right)\varepsilon \left( {{{{\mathcal {Q}}}_{0}}}+\varDelta {{{\mathcal{Q}}}_{\text{P}}} \right) -\left( {{\delta }_{\text{T}}0}+\varDelta {{\delta }_{\text{T}}} \right) \right] \nonumber\\&\quad -{{\mu }_{0}}\left[ 1+\frac{2\eta \left( f \right)\varepsilon }{{{Q}_{0}}}-{{\delta }_{\text{T}0}} \right] \nonumber\\&\quad \approx {{\mu }_{0}}\left[ 2\eta \left( f \right)\varepsilon \left( \varDelta {{{\mathcal {Q}}}_{\text{P}}} \right)-\left( \varDelta {{\delta }_{\text{T}}} \right) \right] \nonumber\\&\quad +\varDelta \mu \left[ 1+2\eta \left( f \right)\varepsilon \left( {{{{\mathcal {Q}}}_{0}}}+\varDelta {{{\mathcal{Q}}}_{\text{P}}} \right) -\left( {{\delta}_{\text{T}0}}+\varDelta {{\delta }_{\text{T}}} \right) \right] ,\end{aligned}$$
(A.10)

and again under the assumption of isotropic elastic background and small perturbations in S-wave modulus, attenuation and anisotropy, we further simplify \({\varDelta }C_{55}\) as

$$\begin{aligned}&\varDelta {{C}_{55}}(f)\approx \left( {{\mu}_{0}}+\varDelta \mu \right) \left[ 1+2\eta \left( f \right) \varepsilon \left( {{{{\mathcal {Q}}}_{0}}}+\varDelta {{{\mathcal {Q}}}_{\text{P}}} \right) -\left( {{\delta}_{\text {T}0}}+\varDelta {{\delta}_{\text{T}}} \right) \right] \nonumber \\&\quad -{{\mu}_{0}}\left[ 1+\frac{2\eta \left( f \right) \varepsilon}{{{Q}_{0}}}-{{\delta}_{\text{T}0}} \right] \nonumber \\&\quad \approx {{\mu}}\left[ 2\eta \left( f \right) \varepsilon \left( \varDelta {{{\mathcal {Q}}}_{\text{P}}} \right) -\left( \varDelta {{\delta}_{\text{T}}} \right) \right] +\varDelta \mu , \end{aligned}$$
(A.11)

where we approximately replace \(\mu _{0}\) with \(\mu\).

The perturbation in stiffness parameter \(C_{66}\) simplifies as

$$\begin{aligned} \begin{aligned} \varDelta {{C}_{66}}(f)\approx&2{\mu }\eta\; \left( f \right)\; \varepsilon\; \left( \varDelta {{{\mathcal {Q}}}_{\text{P}}} \right) +\varDelta \mu . \end{aligned} \end{aligned}$$
(A.12)

Appendix B: PP-wave reflection coefficient in anisotropic anelastic media

Shaw and Sen (2004, 2006) propose an approach of employing the scattering function that is related to perturbations in stiffness parameters to calculate reflection coefficients in anisotropic media. Following Shaw and Sen (2004, 2006), we use simplified perturbations in frequency-dependent stiffness parameters shown in Appendix A to derive P-to-P reflection coefficient in anisotropic anelastic media. The scattering function in anisotropic anelastic media is calculated as

$$\begin{aligned} \begin{aligned} S(f)=\varDelta \rho \cos 2\theta +\sum \limits _{i=1,j=1}^{i=6,j=6}{{\chi }_{ij}}~{\varDelta {{C}_{ij}}(f)}, \end{aligned} \end{aligned}$$
(A.13)

where \(\varDelta \rho\) represents perturbation in density across the reflection interface, \(\theta\) is the angle of P wave, and \(\chi _{ij}\) is a function of \(\theta\) and azimuth \(\phi\), which is given by

$$\begin{aligned} \begin{aligned}&{{\chi }_{11}}=\frac{{{\sin }^{4}}\theta {{\cos }^{4}}\phi }{{{\alpha }^{2}}},{{\chi }_{12}}=\frac{{{\sin }^{4}}\theta {{\sin }^{2}}\phi {{\cos }^{2}}\phi }{{{\alpha }^{2}}},{{\chi }_{13}}=\frac{{{\sin }^{2}}\theta {{\cos }^{2}}\theta {{\cos }^{2}}\phi }{{{\alpha }^{2}}},\\&{{\chi }_{21}}={{\chi }_{12}},{{\chi }_{22}}=\frac{{{\sin }^{4}}\theta {{\sin }^{4}}\phi }{{{\alpha }^{2}}},{{\chi }_{23}}=\frac{{{\sin }^{2}}\theta {{\cos }^{2}}\theta {{\sin }^{2}}\phi }{{{\alpha }^{2}}},\\&{{\chi }_{31}}={{\chi }_{13}},{{\chi }_{32}}={{\chi }_{23}},{{\chi }_{33}}=\frac{{{\cos }^{4}}\theta }{{{\alpha }^{2}}},\\&{{\chi }_{44}}=\frac{-4{{\sin }^{2}}\theta {{\cos }^{2}}\theta {{\sin }^{2}}\phi }{{{\alpha }^{2}}},{{\chi }_{55}}=\frac{-4{{\sin }^{2}}\theta {{\cos }^{2}}\theta {{\cos }^{2}}\phi }{{{\alpha }^{2}}},{{\chi }_{66}}=\frac{4{{\sin }^{4}}\theta {{\sin }^{2}}\phi {{\cos }^{2}}\phi }{{{\alpha }^{2}}}, \end{aligned} \end{aligned}$$
(A.14)

where \(\alpha\) is P-wave velocity of background. The P-to-P reflection coefficient is derived as

$$\begin{aligned} \begin{aligned} {{R}_\mathrm{PP}}(\theta ,f)=\frac{1}{4\rho {{\cos }^{2}}\theta }&\left. [ \varDelta \rho \cos 2\theta +\left( {{\chi }_{11}}+{{\chi }_{22}} \right) \varDelta {{C}_{11}}(f)+2{{\chi }_{12}}\varDelta {{C}_{12}}(f)\right. \\&\left. +2{{\chi }_{13}}\varDelta {{C}_{13}}(f)+2{{\chi }_{23}}\varDelta {{C}_{13}}(f)+{{\chi }_{33}}\varDelta {{C}_{33}}(f)\right. \\&\left. +\left( {{\chi }_{55}}+{{\chi }_{44}}(f) \right) \varDelta {{C}_{55}}(f)+{{\chi }_{66}}\varDelta {{C}_{66}}(f)\right. ]. \end{aligned} \end{aligned}$$
(A.15)

Substituting perturbations in stiffness parameters to equation A.15, we derive \(R_\mathrm{PP}(\theta ,f)\) as

$$\begin{aligned} \begin{aligned} {{R}_\mathrm{PP}}(\theta ,f)=&\frac{\Delta \rho \cos 2\theta }{4\rho {{\cos }^{2}}\theta }\\&+\frac{1}{4M{{\cos }^{2}}\theta }\left. [ \Delta M-8{{\sin }^{2}}\theta {{\cos }^{2}}\theta \Delta \mu + 2M\eta \left( f \right) \Delta {{\mathcal {Q}}_{\text{P}}}\right. \\&\left. -8{{\sin }^{2}}\theta {{\cos }^{2}}\theta \mu \eta \left( f \right) \varepsilon \Delta {{\mathcal {Q}}_{\text{P}}} -M{{\left( 1-2g{{\sin }^{2}}\theta \right) }^{2}}\Delta {{\delta }_{\text{N}}} +4{{\sin }^{2}}\theta {{\cos }^{2}}\theta \mu \Delta {{\delta }_\mathrm{T}} \right. ]\\ =&\frac{\Delta \rho \cos 2\theta }{4\rho ~{{\cos }^{2}}\theta }+\frac{\Delta M}{4M{{\cos }^{2}}\theta }-2g~{{\sin }^{2}}\theta \frac{\Delta \mu }{\mu }\\&+\left( \frac{1}{2{{\cos }^{2}}\theta }-2g~{{\sin }^{2}}\theta ~\varepsilon \right) \eta \left( f \right) \Delta {{\mathcal {Q}}_{\text{P}}}\\&-\frac{1}{4}{{\sec }^{2}}\theta {{\left( 1-2g~{{\sin }^{2}}\theta \right) }^{2}}\Delta {{\delta }_{\text{N}}}+g{{\sin }^{2}}\theta \Delta {{\delta }_{\text{T}}}. \end{aligned} \end{aligned}$$
(A.16)

Appendix C: Algorithm of Bayesian Markov chain Monte Carlo (MCMC)

Following Chen et al. (2017), we express the posterior probability distribution function (PDF), \(P\left( \mathbf {m}|\mathbf {d}\right)\), as

$$\begin{aligned} \begin{aligned} P\left( \mathbf {m}|\mathbf {d}\right) =P\left( \mathbf {d}|\mathbf {m}\right) P\left( \mathbf {m}\right) , \end{aligned} \end{aligned}$$
(A.17)

where \(P\left( \mathbf {d}|\mathbf {m}\right)\) is the likelihood function, and \(P\left( \mathbf {m}\right)\) is the prior probability function. In the present study, we assume both the likelihood function and the prior probability are consistent with Gaussian distribution; hence the posterior PDF is expressed as

$$\begin{aligned} \begin{aligned} P\left( \mathbf {m}|\mathbf {d}\right)\; {\propto }\;\exp&\left. \{ -\Sigma \frac{\left[ \mathbf{{d}}-\mathbf{{G}}\left( \mathbf{{m}}\right) \right] ^{T}\left[ \mathbf{{d}}-\mathbf{{G}}\left( \mathbf{{m}}\right) \right] }{2{\sigma ^{2}_\mathbf{\mathrm{e}}}}\right. \\&\left. -\Sigma \frac{\left( \mathbf{{M}}-{\psi _\mathbf{{M}}}\right) ^{T}\left( \mathbf{{M}}-{{\psi _\mathbf{{M}}}}\right) }{2{\sigma ^{2}_{\mathbf{{M}}}}} -\Sigma \frac{\left( {\varvec{\mu }}-{{\psi _{\varvec{\mu }}}}\right) ^{T}\left( {\varvec{\mu }}-{{\psi _{\varvec{\mu }}}}\right) }{2{\sigma ^{2}_{{\varvec{\mu }}}}}\right. \\&\left. -\Sigma \frac{\left( {\varvec{\rho }}-{\psi _{\varvec{\rho }}}\right) ^{T}\left( {\varvec{\rho }}-{{\psi _{\varvec{ \rho }}}}\right) }{2{\sigma ^{2}_{{{\varvec{\rho }}}}}} -\Sigma \frac{\left( \mathbf{{Q}_{\text{n}}}-{{\psi _{\mathbf{{Q}_\text{n}}}}}\right) ^{T}\left( \mathbf{{Q}_{\text{n}}}-{{\psi _{\mathbf{{Q}_\text{n}}}}}\right) }{2{\sigma ^{2}_{{{\mathbf{{Q}_{\text{n}}}}}}}}\right. \\&\left. -\Sigma \frac{\left( {\varvec{\delta }_\mathrm{N}}-{\psi _{{\varvec{\delta }_\mathrm{N}}}}\right) ^{T}\left( {\varvec{\delta }_\mathrm{N}}-{\psi _{{\varvec{\delta }_\mathrm{N}}}}\right) }{2{\sigma ^{2}_{{\varvec{\delta }_{\text{N}}}}}} -\Sigma \frac{\left( {\varvec{\delta }_\mathrm{T}}-{\psi _{{\varvec{\delta }_\mathrm{T}}}}\right) ^{T}\left( {\varvec{\delta }_\mathrm{T}}-{\psi _{{\varvec{\delta }_\mathrm{T}}}}\right) }{2{\sigma ^{2}_{{\varvec{\delta }_{\text{T}}}}}} \right. \}, \end{aligned} \end{aligned}$$
(A.18)

where \(\psi _\mathbf{{M}}\), \(\psi _{\varvec{\mu }}\), \(\psi _{{\varvec{\rho }}}\), \(\psi _\mathbf{{Q}_{\text{n}}}\), \(\psi _{{{\varvec{\delta }}_{\text{N}}}}\), and \(\psi _{{{\varvec{\delta }}_{\text{T}}}}\) represent average values of corresponding vectors respectively, \(\sigma ^2_\mathbf{{M}}\), \(\sigma ^2_{\varvec{\mu }}\), \(\sigma ^2_{{\varvec{\rho }}}\), \(\sigma ^2_\mathbf{{Q}_{\text{n}}}\), \(\sigma ^2_{{{\varvec{\delta }}_{\text{N}}}}\), and \(\sigma ^2_{{{\varvec{\delta }}_{\text{T}}}}\) represent variance values of corresponding vectors respectively, and \(\sigma ^2_\mathbf{{e}}\) represents the variance of errors/noises between input and modeled data.

In the Bayesian MCMC algorithm, we determine whether the generated candidate \(\mathbf{{m}}^{'}\) should be accepted or not based on the calculation of a acceptance probability

$$\begin{aligned} \begin{aligned} P_\mathrm{ac}\left( {\textbf {m}}^{'}\right) =\min \left[ 1,\frac{P\left( \mathbf{{m}}^{'}|{\textbf {d}}\right) }{P\left( {\textbf {m}}_{0}|{\textbf {d}}\right) }\right] , \end{aligned} \end{aligned}$$
(A.19)

where \(P\left( \mathbf{{m}}^{'}|{\textbf {d}}\right)\) and \(P\left( \mathbf{{m}}_{0}|\mathbf {d}\right)\) are posterior probabilities that are computed using equation A.18 for the generated candidate and the initial guess, respectively.

Given a generated candidate \({\textbf {m}}^{'}\), we compute the acceptance probability \(P_\mathrm{ac}\left( {\textbf {m}}^{'}\right)\) using equation A.19 and compare \(P_\mathrm{ac}(\mathbf{{m}}^{'})\) with a random value \(\beta\) generated in the range of \(\left[ 0,1\right]\). We only accept the candidate that makes \(P_\mathrm{ac}\left( {\textbf {m}}^{'}\right)\) be larger than \(\beta\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Han, J., Geng, J. et al. Anisotropic Anelastic Impedance Inversion for Attenuation Factor and Weaknesses Combining Newton and Bayesian Markov Chain Monte Carlo Algorithms. Surv Geophys 43, 1845–1872 (2022). https://doi.org/10.1007/s10712-022-09727-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-022-09727-y

Keywords

Navigation